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Appendix 1
Proposition 1

The asymptotic properties of the information-based estimator are based
on standard results on empirical processes of stationary mixing sequences
[see e.g. Arcones, Yu (1994), VanderVaart, Wellner (1996)] and on the al-
most sure uniform convergence of the kernel estimator of density function
for serially dependent observations [see e.g. Tenreiro (1995), Th. 2.2.6, or
Hansen (2006)] The latter condition [see Assumptions A.5, A.16 on the tail
behavior and condition A.18 on the bandwidth] is required to prove the uni-
form convergence of the standardized criterion function and to derive the
(a.s) convergence of the estimator.

The set of sufficient regularity conditions is given below. Next, the asymp-
totic expansions are provided, to justify the asymptotic normality and effi-
ciency of the estimators. Note that we are interested in the asymptotic
properties of the parameter estimator and not in the asymptotic behavior of
the kernel estimator itself. The asymptotic efficiency of the parameter es-
timator can be reached even without an optimal bandwidth selection. This
explains why Assumption A.17 can eliminate the asymptotic bias and the
optimal nonparametric rate.

A.1 Regularity Conditions
Below, we provide a set of sufficient conditions to derive the asymp-

totic behavior of the information-based estimator. These assumptions can be
weakened, for example, to accommodate non-Markov processes, more condi-
tioning variables or to account for the fat tails of the distribution (see the
discussion of the trimmed estimator in section 3.3). As usual, ||A|| denotes
the Frobenius norm of a matrix, which reduces to the Euclidean norm when
A is a vector. Cm denotes the space of functions f , which are continuously
differentiable up to order m, and ||Dmf ||∞ = ||dmf(y)/dym||∞.

i) Assumptions on the process

Assumption A.1 : The process (yt) is a univariate continuous Markov process,
strictly stationary and geometric strong mixing.

Assumption A.2: xt = yt−1.

Assumption A.3 : The stationary density f of Yt is in class Cm, for some
m ∈ N,m ≥ 2, such that ||f ||∞ <∞ and ||Dmf ||∞ <∞.
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Assumption A.4 : The stationary density ft of Yt and ft1,t2 of (Yt1 , Yt2) are
such that ||ft||∞ < ∞, and supt1<t2 ||ft1,t2||∞ < ∞, respectively. Moreover,
for t1 < t2 < t3 < t4, the stationary density ft1,t2,t3,t4 of (Yt1 , Yt2 , Yt3 , Yt4) is
such that:

supt1<t2<t3<t4||ft1,t2,t3,t4||∞ <∞.

Assumption A.5 : There exists a positive constant c ≥ 2, such that:
i) E(|Yt|2c) <∞;
ii) |||y|2ft(y)||∞ <∞.

ii) Assumptions on the model

Assumption A.6 : The dynamic quantile model is well-specified, with θ0 as
the true value of the parameter.

Assumption A.7 : The parameter space is compact and θ0 is in the interior
of the parameter space.

Assumption A.8 : θ0 is identifiable.

Assumption A.9 : The dynamic quantile model is DAQ.
The functions ak(x, αk), k = 0, ..., K are twice continuously differentiable

with respect to x, αk, k = 0, ..., K.
The baseline quantile functions Qk(., βk), k = 1, ..., K are twice continu-

ously differentiable with respect to βk, k = 1, ..., K.

Assumption A.10 : Let us denote f(y|x; θ) the conditional density of yt
given xt. The mapping x → supθ

∫
f(y|x; θ) log(f(y|x; θ)/f(y|x; θ0))dyf(x)

is bounded

Assumption A.11: There exists δ, γ > 1, τ > 0 such that

E

(
||∂ log f(Yt|Xt; θ0)

∂θ
||τ
)

< ∞,

E

(
supθ||

∂ log f(Yt|Xt; θ0)

∂θ
||δ
)

< ∞,

E

(
supθ||

∂2 log f(Yt|Xt; θ0)

∂θ∂θ′
||γ
)

< ∞.

Assumption A.12: The mapping
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x→ E

(
supθ||

∂ log f(Yt|Xt; θ0)

∂θ
||2|X0 = x

)
f(x)

is bounded

Assumption A.13: The functions

θ → E

(
∂ log f(Yt|Xt; θ0)

∂θ

)
,

θ → E

(
∂2 log f(Yt|Xt; θ0)

∂θ∂θ′

)
,

θ → E

(
∂ log f(Yt|Xt; θ0)

∂θ
|Xt = x

)
,

are continuous on the interior of the parameter space, for any x.

iii) Assumptions on the kernels and bandwidths

Assumption A.14 : K∗ = K,h∗T = hT , that is, we consider a product kernel.

Assumption A.15 : The kernel K is a Parzen kernel of order m, that is :
i)
∫
K(y)dy = 1;

ii) K is bounded, lim|y|→∞ |y|K(y) = 0,
∫
|K(y)|dy < ∞,

∫
K(y)2dy <

∞;
iii)
∫
ylK(y)dy = 0, for any l ∈ N , such that l < m, and

∫
K(y)|y|mdy <

∞.

Assumption A.16 : The kernel K is differentiable, ||dK(u)
du
||∞ <∞ and there

exist positive constants c0, c1, such that |dK(u)
du
| < c0|u|c for |u| > c1, where

the constant c is defined in Assumption A.5.

Assumption A.17 : The bandwidth hT is such that : Th2+2m
T → 0, as T →∞.

Assumption A.18 : The bandwidth is such that Tαh2
T/ log T →∞, as T →∞

for some α < 0.5.

A.2 Asymptotic Expansions
The estimator is a solution to the following optimization:

3



θ̂T = arg minθ

T∑
t=1

{∫
f(y|xt; θ) log f(y|xt; θ)dy

−
∫
f(y|xt; θ) log f̂0T (y|xt)dy

}

= arg minθ

T∑
t=1

{∫
ft(y; θ) log ft(y; θ)dy −

∫
ft(y; θ) log f̂0,T,t(y)dy

}
,

say.

i) First-order conditions

They are given by :

T∑
t=1

{∫
∂ft
∂θ

(y; θ̂T ) log ft(y; θ̂T )dy +

∫
∂ft
∂θ

(y; θ̂T )dy −
∫
∂ft
∂θ

(y; θ̂T ) log f̂0,T,t(y)dy

}
= 0,

or :

T∑
t=1

{∫
∂ft
∂θ

(y; θ̂T ) log ft(y; θ̂T )dy −
∫
∂ft
∂θ

(y; θ̂T ) log f̂0,T,t(y)dy

}
= 0,

since :

∫
∂ft
∂θ

(y; θ̂T )dy = 0.

ii) Expansion of the first-order conditions

Let us consider the expansion when T is large and θ̂T is in a neighbour-
hood of θ0. We get :

T∑
t=1

{∫ [
∂ft
∂θ

(y; θ0) +
∂2ft
∂θ∂θ′

(y; θ0)(θ̂T − θ0)

]
log[ft(y; θ0) +

∂ft
∂θ′

(y; θ0)(θ̂T − θ0)]dy

}
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−
∫ [

∂ft
∂θ

(y; θ0) +
∂2ft
∂θ∂θ′

(y; θ0)(θ̂T − θ0)

]
log
[
ft(y; θ0) + f̂0,T,t(y)− ft(y; θ0)]dy

}
'

0,

or :

T∑
t=1

∫
1

ft(y; θ0)

∂ft
∂θ

(y; θ0)
∂ft
∂θ′

(y; θ0)dy(θ̂T − θ0)

−
T∑
t=1

∫
∂ft
∂θ

(y; θ0)
1

ft(y; θ0)
[f̂0,T,t(y)− ft(y; θ0)]dy ' 0.

We deduce that :

√
T (θ̂T − θ0) '

[
1

T

T∑
t=1

Et

[
∂ log ft(y; θ0)

∂θ

∂ log ft(y; θ0)

∂θ′

]]−1

√
T

T∑
t=1

∫
∂ log ft(y; θ0)

∂θ

[
f̂0,T,t(y)− ft(y; θ0)

]
dy

'
(
E

[
∂ log ft(y; θ0)

∂θ

∂ log ft(y; θ0)

∂θ′

])−1

1√
T

T∑
t=1

∫
∂ log ft(y; θ0)

∂θ
[f̂0,T,t(y)− ft(y; θ0)]dy.

The result follows from the asymptotic properties of the kernel estimator
of the conditional density. Indeed, we get :

1/
√
T

T∑
t=1

∫
∂ log ft(y; θ0)

∂θ

[
f̂0,T,t(y)− ft(y; θ0)

]
dy

; N

(
0, E

[
∂ log ft(y; θ0)

∂θ

∂ log ft(y; θ0)

∂θ′

])
.

The asymptotic bias of the kernel estimator of density has been eliminated by
the appropriate choice of the bandwidth (see Assumption A.17). The para-
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metric rate of convergence is due to the integral expression of the asymptotic
equivalent.

Appendix 2
Asymptotic Expansion of a sample moment condition

Let us assume that the instrumental variable is a function of variable
X : Zt = Z(Xt), say, and consider the expansion of the sample moment
condition. We get:

1√
T

T∑
t=1

{
Z(Xt)Ytg[F̂T (Yt|Xt)]− E[Z(Xt)Ytg[F0(Yt|Xt)]]

}
≈ 1√

T

T∑
t=1

{Z(Xt)Ytg[F0(Yt|Xt)]− E[Z(Xt)Ytg[F0(Yt|Xt)]]}

+
1√
T

T∑
t=1

Z(Xt)Yt
dg

du
[F0(Yt|Xt)][F̂T (Yt|Xt)− F0(Yt|Xt)]

≈
∫ ∫

Z(x)yg[F0(y|x)]d
√
T [ĜT (y, x)−G0(y, x)]

+

∫ ∫
Z(x)y

dg

du
(F0(y|x))

√
T [F̂T (y|x)− F0(y|x)]dG0(y, x),

where G0(y, x) is the joint cdf of (Yt, Xt) and ĜT its sample counterpart.
Similarly, let us denote by ĜT (x) [resp G0(x)] the sample cdf of Xt [resp.

the unconditional cdf of Xt]. We get:
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1√
T

T∑
t=1

{
Z(Xt)Ytg[F̂T (Yt|Xt)]− E[Z(Xt)Ytg[F0(Yt|Xt)]]

}
≈

∫ ∫
Z(x)yg[F0(y|x)]d[

√
T [F̂T (y|x)− F0(y|x)]G0(x) + F0(y|x)

√
T [ĜT (x)−G0(x)]]

+

∫ ∫
Z(x)y

dg

du
[F0(y|x)]

√
T [F̂T (y|x)− F0(y|x)]d[G0(x)F0(y|x)]

≈
∫
Z(x)[

∫
yg[F0(y|x)]d[

√
T [F̂T (y|x)− F0(y|x)]]dG0(x)

+

∫
Z(x)[

∫
yg[F0(y|x)]dF0(y|x)]d

√
T [ĜT (x)−G0(x)]

+

∫
Z(x)[

∫
y
dg

du
[F0(y|x)]

√
T [F̂T (y|x)− F0(y|x)]dF0(y|x)]dG0(x).

Thus, the asymptotic behavior of the sample moment condition depends
on the joint asymptotic behavior of the processes (

√
T [ĜT (x)−G0(x)],

√
T [F̂T (y|x)−

F0(y|x)], which are indexed by x and y. Loosely speaking, if the observa-
tions (Xt, Yt), t = 1, .., T were iid, we could apply standard functional limit
theorems and the asymptotic independence between processes (

√
T [ĜT (x)−

G0(x)] and
√
T [F̂T (y|x) − F0(y|x)], for any x, to deduce from the expan-

sion above the asymptotic normality of the sample moment condition and a
rather simple expression of the asymptotic variance-covariance matrix. When
Xt = Yt−1, the asymptotic normality still holds under reasonable regularity
conditions, but the expression of the asymptotic variance has to take into
account serial dependence and is rather cumbersome.

7


