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0.1 Second-Order Identification of causal and noncausal
directions

Let us now explain how to use the autocovariances in order to identify the
causal /noncausal directions for given njg, or n — njy. More precisely, in a
mixed process with causal characteristics (n;, A') and noncausal character-
istics (ng, A?), we have (see Proposition 2) :

[a(h) = Cou(Yyy, Yo p)
= Cov(A'Y;, A*Y, ;)
= AT(h)(A%)
= 0 ,for h <0. (1)

The above covariance conditions are used to consistently estimate the causal
and noncausal directions A!, A? for given dimensions ni,ns = n — n.

step one) Search for the causal and noncausal directions

Let us denote the causal/noncausal dimensions by n; and ny = n — ny,
respectively. Then the causal/noncausal directions can be estimated as the
solutions of the following constrained minimization:

(A", A%) = argg%ZHfll h)(A%Y]?, (2)

s.t. AT(0)(AYY = Id,,, AT (0)(A2) = Id,_p,,

where ||C|[2 = Tr(CC"),I'(h) is the sample counterpart of I'(h), the lag,
H,H > 0, is sufficiently large, and the standardization concerns matrix A~*
directly (see (3.2) in section 3.1). The value of the objective function at the
optimum is denoted by L(ny,n — ny).

In model (2.1) and under Assumptions A1-A2, the sample autocovari-
ances f(h),h = 0,...,—H converge a.s. to their theoretical counterpart
I'(h), when the number of observations 7' tends to infinity. Thus the so-
lutions A', A% that minimize objective function (3.8) converge a.s. to the
solutions of the associated asymptotic minimization, in which the sample-
based I'(h) are replaced by their theoretical counterparts D(R). If ny is equal
to the true causal dimension n, o, then, the asymptotic objective function is



minimized for the true causal and noncausal directions. Thus A7 is a con-
sistent estimator of Aé,j = 1,2. If n; is equal to n — n; 9, the minimum of
the asymptotic objective function is equal to zero. If n, is different from n;
and n — nyp, the minimum of the asymptotic objective function is strictly
positive.

step two) Identification of causal and noncausal dimensions

We identify the causal dimension, which is either niy, or n — nqy from
the residual analysis as follows. For this purpose, we apply the estimation
method of A, A% introduced above, for a given causal dimension n;¢, say, and
compute the estimated causal and noncausal components : )A/l*t = A'Y}, }A/Q*t =

A?Y,. Next, we proceed in the following order:
a) regress Y7, on Y%, ; to find J; and the associated residuals £7 , [resp.

372’} on }A/Q’ftﬂ to find —J; .

b) estimate matrix ® as d=A ( {)1 ? ) A=) and compute the mixed
2

residuals € =Y, — @Yt_l.

c) plot the nonlinear ACF of (¢;) *. If the nonlinear ACF are not sig-
nificant, the process is mixed (ni9,n — nyp). Otherwise, we have the mixed
process (n — nig, N1g)-

The above identification procedure relies mainly on moments up to order
two, except for the analysis of nonlinear autocorrelograms of the residuals,
which requires nonlinear methods and relies on the serial independence of
the error terms.

We have mentioned in the introduction the importance of noncausal com-
ponents that capture speculative bubbles, in processes with fat-tailed errors
€5, The presence of fat tails is not compatible with the existence of second-
order moments of the error term. Nevertheless, the procedure described
above relies on the sample autocovariances f(h) and not on the theoretical
autocovariances T'(h). It is known that I'(k) can preserve the consistency
and asymptotic distributional properties, even in the presence of fat tail er-
rors, such as errors with stable distributions [see e.g. Davis, Resnick (1986)].

Therefore, the method proposed above will provide consistent estimators of

1See Gourieroux, Jasiak (2001) for the definition and implementation of nonlinear au-
tocorrelograms.



A', A% provided that the standardization A7 T(0)A’ = Id is used in order to
control the possibly different speeds of convergence of the elements of I'.

1 Illustration

In this section, we first illustrate the application of the Generalized Covari-
ance estimator introduced in Section 4 to simulated data and discuss its
finite sample properties. Next, the GCov estimator is used to analyze the
dynamics of commodity futures.

1.1 The simulated data

Let us consider a bivariate process n = 2 of causal and noncausal dimensions
equal to 1: n; = n —ny = 1. The following parameter values are fixed:

Jy=0.7,Jy =2,
(11N L (11
A‘(o 1)’A _<01)'

The errors €; = (€14, €2¢)" are such that €4, €o; are drawn independently in
the same t-Student distribution with the degree of freedom v = 4, zero mean
and variance equal to v/(v — 2).

The autoregressive matrix is equal to:

Jp 0 1 0.7 —1.3

v=a( 5 )a= (00 2 )
We create a sample of length 7" = 1000 by simulating 2000 errors €/, =
1,....,T, and by computing the simulated transformed errors €* = A~le;,
from which the values of the causal component Y7 = JiY{7 | + €%, =
1,...,T, with initial value Y;"5 = 0, and the values of the noncausal com-
ponent: Y57 = 1/LY;7., — 1/)e5,,t = 1,..,T, with terminal value
Y;7,1 = 0 are obtained. Next, we compute the values of the series Y;* =
AY, t = 1,...,T and discard the first and last 500 realizations. They are
related to the observed process as follows: Yi; = Yy, Yo, = Y, + Y5,
— Yi, =Y, Y3, = Yo, — Y1,;. Hence, the first component of Y; is purely
causal and its second component is a mixture of a causal and a noncausal
process.



Figure 1 shows the path of the two components of the observed process Y
and Figure 2 shows its autocorrelation function.

[Figure 1: Simulated Y]

The first observed component has mean -0.147 and variance 8.296 and the
second component has mean 0.028 and variance 0.633. Their contemporane-
ous correlation is -0.221.

[Figure 2: Autocorrelation Function of Y]

The simulated data display multiple peaks in the trajectory due to the fat
tails of the errors. Indeed, for the selected value of parameter v = 4, the
kurtosis of the errors does not exist. The marginal and cross autocorrelations
are significant up to lag 10 with exponential decay rates determined by the
values of J; = 0.7 and 1/.J, = 0.5.

Let us now consider the auto- and cross-correlations of the causal and non-
causal components of Y,*.

[Figure 3: Autocorrelation Function of Y]

The cross-correlations are almost all not significant in the South-West panel
of Figure 3. This illustrates the condition: I'] ,(h) = 0, for h <0, derived in
Proposition 2, and used in the exploratory analysis below.

1.2 The exploratory analysis

Let us first apply the exploratory analysis along the lines of Section 3.4 [see
also Appendix 5 in the complementary material] and consider various possible
combinations that are:

(n1,m —nq) = (2,0) for a pure causal process,

(n1,n —ny) = (0,2) for a pure noncausal process,

(n1,m —ny) = (1,1) for a mixed causal/noncausal process.

Pure causal model

In the pure causal model, matrix ¢ is estimated by the Ordinary Least
Squares (OLS) from the Seemingly Unrelated Regression of Y; on Y, ;. We
gggé _01427;2 ) with eigenvalues A\; = 0.67
and Ay = 0.52. As expected, the eigenvalues are close to J; = 0.7 and
1/J5 = 0.5. The explosive root is captured by the estimate of its stationary
counterpart.

get the estimated matrix o = (



It is clear that the pure causal model is misspecified as the second row
of matrix @ is very different from the second row of the true matrix ¢. In
practice, the true matrix ® is unknown and such a misspecification will be
detected from the analysis of the causal residuals.

Figure 4 below displays the ACF of the SUR-based causal residuals: ¢, =
Y, — Y.

[Figure 4: Autocorrelation Function of Causal Residuals |

The correlations are not significant, which implies that the causal residuals
can be considered as weak white noises. Thus, the misspecification cannot
be detected from the second-order properties of the residuals alone. Let us
now consider the ACF computed from the squared causal residuals.

[Figure 5: Autocorrelation Function of Squared Causal Residuals |

We observe significant autocorrelations in the South-East panel. This implies
that causal errors ¢; are not serially independent. Thus, the pure causal
dynamics is rejected.

Pure noncausal process

A similar approach is used for the pure noncausal process. More precisely,
the initial model Y; = ®Y;_| + ¢ is transformed into its forward-looking rep-
resentation Y; = &Y, — ®l¢, ;. Therefore, matrix ®~! can be estimated
by the OLS in the SUR regression of Y; on Y.

. . . oA 0.823 0.392

The estimated autoregressive coefficient is &7 = 0117 0.368 ) Its
1.054 —1.122

0.336  2.356

of & are A1 = 1.492 and Ay = 1.917 and are close to 1/J; = 1.428 and
Jo = 2.0. The autocorrelation functions of the noncausal residuals and their
squares are provided in Figures 6 and 7.

inverse provides the estimate of ®: d = ( ) . The eigenvalues

[Figure 6: Autocorrelation Function of Noncausal Residuals |
[Figure 7: Autocorrelation Function of Squared Noncausal Residuals |

The noncausal residuals satisfy the weak white noise condition. However,
the pure noncausal specification is rejected due to significant squared auto-
correlations of the squared residuals in the top panels.

Mixed process



In the mixed case, we estimate the rows A'!, A% of matrix A~! by mini-
mizing the objective function (3.8). This constrained minimization involves

the autocovariances up to lag H = 4 and yields the estimated matrix Al =
( —0038(()38 (1);23 Let us now compare the matrices A=l and A7L. We
know that A, A? are defined up to linear invertible transforms (as well as
the associated causal and noncausal components) (see the discussion in Sec-
tion 3.1). Therefore in our framework, we verify if the first rows of A~ and
A~! (resp. the second rows) are close to being proportional. The cosine
between the row vectors are:
cosy = 0.995, coss = 0.999, showing a quasi-proportionality.
Given these estimates, we compute the fitted components:
Yy, = A, Yy, = A%, by Corollary 2. Figure 8 displays the scatterplots

of (YA,Y%),j=1,2.

7ty gt
[Figure 8: Scatterplots of Fitted and True Components]

The true and fitted components satisfy a quasi-linear relationship, which is
compatible with the definition of these components up to a multiplicative
scalar. The R? of the associated regressions are R? = 0.997 and R? = 0.999,
respectively. Let us now consider the auto- and cross-correlations of Y/t*

[Figure 9: Autocorrelation Function of Y;*]

As expected, the autocorrelations of Yt* in the South-West panel are almost
nonsignificant.

The regression coeflicient obtained by regressing }A/l*t on f/fftfl [resp. Y;t
on Y;tﬂ] provide the estimated values J; = 0.725 and 1/.J, = 0.472. Given
these and the previously estimated matrix A~ the estimated ® matrix is:

& 0.732 —1.141

—0.008 2.111
Next, we compute the mixed causal-noncausal residuals as:

& =Y, — Yy,
and display the ACF of the mixed residuals and of the squared mixed resid-
uals in Figures 10 and 11.

[Figure 10: Autocorrelation Function of Mixed Residuals]
[Figure 11: Autocorrelation Function of Squared Mixed Residuals]

All autocorrelations are non-significant and the mixed causal /noncausal model
is not rejected.



The exploratory analysis outlined may be considered as a preliminary
step prior to applying more sophisticated estimation methods. It provides
values of Jy, Jy, A, ®, which can be used to initiate the algorithms for
computing more efficient semi-parametric estimators, such as the Generalized
Covariance estimator discussed in the next section.

1.3 Application to commodity futures
[Insert Figure D: VAR(1) Residuals]

[Insert Figure E: VAR(3) residuals]



Appendix 5

Complementary Material: Direct Search of the Causal and
Noncausal Directions

A.5.1 Discussion of Optimization (3.8)

The constrained minimization (3.8) is similar to the canonical correlation
analysis. We are looking for the linear transformations A!, A%, which are the
least correlated at any nonpositive lag 2. Therefore, one could replace the
global optimization of objective function (3.8) by a recursive optimization in
the spirit of the recursive optimization in Independent Component Analysis
(ICA) [see e.g. Ilmonen et al. (2012)].

The optimization of objective function (3.8) involves n? arguments, that
ni(ny + 1) N (n—n1)(n—ny+1)

are the elements of matrix A~1, subject to

constraints; thus the number of functionally independent arguments is equal
to :

ni(n; — 1) N (n—mnq1)(n—ny —1)
2 2

In standard economic applications the dimension n is rather small, and the

global optimization of objective function (3.8) is easily performed. Table 1

below provides the number of independent arguments.

2n1(n —ny) + (a.3)

Table 1 : Number of independent arguments

Causal dimension n;
Sizen | n; =1 ny =2
2 2 /
3 5 /
4 9 10
5 14 16

2The objective function in (3.8) has an analogue in Second-Order Blind Identifica-

tion (SOBI) of jointly uncorrelated, but serially correlated sources [see Belouchrani et al.
h

(1997)]. The criterion is of the type » ||AT'(h)A'|]?, s.t. AT(0)A’ = Id.
h=1



There are no numerical outcomes for n; = 0, which is a degenerate case.
For n; > n/2 the outcomes are symmetric.

For each lag h, we get nj(n — ny) quadratic functions of A', A% to be
minimized by means of the norm || |?, and in the global optimization
(H + 1)ny(n — ny) such quadratic elements. Thus there is a minimum value
of H to select for given size n and causal dimension n; in order to have a
unique minimizer of objective function (3.8). The order condition, that is
the minimum H, is given in Table 2.

Table 2 : Order Condition, i.e. Minimum Value of H

Causal dimension ny

Sizen | ny =1 | ny =2 | uniform in ny
2 1 / 1
3 2 / 2
4 2 2 2
5 3 2 3

A.5.2 First-order conditions

Let us now derive the first-order conditions (FOC) to the constrained
minimization of objective function (3.8). Below, it is shown how to eliminate
the estimated Lagrange multipliers from the FOC in order to obtain a system
defining A', A% only. The row vectors of matrix A' (resp. A?) are denoted
by al,i=1,...,ny (resp. az,k=1,...,ny) .

The objective function to be minimized is :

-H

min > 30 (@ T(h)ad)* (a.4)

% p=0 i &k

= 1,¥i,a/ T(0)a} =0,Vi<j,  (abh)

1
a2T(0)a? = 1,Yk,a’T(0)a? =0,Vk <I.  (a.6)

Let us introduce the Lagrange multipliers : X;;/2, \; j,7 < J, /2, prs, kb <
[, associated with the orthonormality restrictions. The FOC for the opti-
mization of the Lagrangian are :

10



P8 0o susial P(nad)fhat — Loyl

K2

— % 5ihigD(0)a} =0,V

oL

5z =0 SpEi(al T(R)a})D(h) al — i xD(0)a3 — Siyspin D(0)a? = 0, Vk.
k

The Lagrange multipliers can be eliminated from the FOC by premultiplying
the FOC by a;, j < i, and by 47,1 < k, respectively. We get the following set
of FOC for the estimates of A, A2, only :

([ Sil(@) T(h)ad)(a) T(h)ad)] = 0,v) < i,
S3i[(@ T(R)a2) (@) T(R)a?)] = 0,1 < k,
a'T(0)a! = 1,4,al'T(0)al = 0,Vi < j,

A

a2T(0)a2 = 1,Vk,a2T(0)a? = 0,Yk < 1.

11
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