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Abstract

We study nonlinear serial dependence tests for non-Gaussian time series
and residuals of dynamic models based on portmanteau statistics involv-
ing nonlinear autocovariances. A new test with an asymptotic χ2 distri-
bution is introduced for testing nonlinear serial dependence (NLSD) in
time series. This test is inspired by the Generalized Covariance (GCov)
residual-based specification test, recently proposed as a diagnostic tool
for semi-parametric dynamic models with i.i.d. non-Gaussian errors. It
has a χ2 distribution when the model is correctly specified and estimated
by the GCov estimator. We derive new asymptotic results under local al-
ternatives for testing hypotheses on the parameters of a semi-parametric
model. We extend it by introducing a GCov bootstrap test for residual
diagnostics,which is also available for models estimated by a different
method, such as the maximum likelihood estimator under a parametric
assumption on the error distribution. A simulation study shows that the
tests perform well in applications to mixed causal-noncausal autoregres-
sive models. The GCov specification test is used to assess the fit of a
mixed causal-noncausal model of aluminum prices with locally explosive
patterns, i.e. bubbles and spikes between 2005 and 2024.
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1 Introduction

Diagnostic checking is an important component of the traditional Box-Jenkins procedure

for the identification and estimation of stationary linear ARMA models with serially un-

correlated Gaussian errors. It has been routinely conducted by applying the Box-Pierce or

Liung-Box tests to the residuals of an ARMA model to detect serial correlation. Analogously,

the diagnostic checking of nonlinear ARCH-type models is often conducted by applying the

Box-Pierce or Liung-Box test twice to the residuals and their squares. Recently, there has

been a growing interest in dynamic models with independent, identically distributed (i.i.d.)

non-Gaussian errors, such as the structural vector autoregressive (SVAR) models for macro-

economic data, the univariate mixed causal-noncausal autoregressive (MAR), multivariate

mixed vector autoregressive (VAR) and double autoregressive (DAR) models for processes

with local explosive features, such as spikes and bubbles, displayed in practice by the com-

modity and cryptocurrency price processes, for example. Diagnostic checking in these models

is commonly based on the Liung Box tests applied to the residuals, their squares, and higher

powers, which is a cumbersome multi-step procedure.

This paper reviews convenient one-step diagnostic procedures for jointly testing various

forms of nonlinear serial dependence in non-Gaussian time series before model estimation,

as well as in the residuals ex-post, as a specification test for dynamic models with i.i.d.

non-Gaussian errors.

We introduce a new (non)linear serial dependence (NLSD) test for strictly stationary

time series with non-Gaussian distributions. We show that in strictly stationary processes,

the hypothesis of the absence of linear and nonlinear serial dependence can be tested by a

multivariate portmanteau test involving nonlinear autocovariances, i.e., the autocovariance

(matrices) of nonlinear transformations of a time series. This approach is available for either

univariate or multivariate processes, and the test statistic follows asymptotically a chi-square

distribution under the null hypothesis.

This method is inspired by the Generalized Covariance (GCov) estimator and a specifi-

cation test introduced by Gourieroux and Jasiak (2023). The GCov specification test allows

for detecting nonlinear serial correlation in the residuals and is a convenient one-step pro-

cedure that can replace multiple Box-Pierce and Liung-Box tests for diagnostic checking of

strictly stationary semi-parametric models with i.i.d. non-Gaussian errors. The advantage

of the semi-parametric approach is that it does not require any distributional assumptions

on the errors other than being i.i.d. and non-Gaussian. Like the NLSD test, the GCov

test statistic has an asymptotic chi-square distribution under the null hypothesis, assum-
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ing that the dynamic model is estimated by the Generalized Covariance (GCov) estimator

[Gourieroux, Jasiak (2023)]. The GCov is a semi-parametric one-step estimator, which is

consistent, asymptotically normally distributed and semi-parametrically efficient3. We study

analytically and through simulations the finite sample properties of this test under the local

alternative hypotheses to provide convincing arguments and empirical evidence revealing its

potential as a widely applicable diagnostic tool.

The limitation of the GCov-specification test is that its asymptotic distribution is known

only when the dynamic model is estimated by the Generalized Covariance (GCov) estimator.

It is only then that the multivariate portmanteau test statistic computed from the nonlinear

autocovariance (matrices) of residuals follows asymptotically a χ2 distribution under the null

hypothesis. This motivates us to introduce a new bootstrap-based GCov test that allows

for using the GCov specification test in models with i.i.d. errors estimated consistently by

a different method, such as the generalized Method of Moments (GMM) or the maximum

likelihood (ML), approximate (AML) or quasi maximum likelihood (QML or PML) methods

under the parametric assumptions on the error distribution.

This paper contributes to the literature on univariate and multivariate portmanteau tests.

The GCov specification test can be compared to the test of the martingale difference hypoth-

esis of De Gooijer (2023), which relies on a portmanteau test statistic computed from the

residuals and squared residuals. The GCov is more general in the sense that it can include the

autocovariances of various nonlinear functions of the residuals rather than the residuals and

their squares only. An alternative approach for specification testing is based on the distance

covariance. Davis and Wan (2022) consider the auto-distance covariance function and pro-

pose a specification test of the null hypothesis of residual independence. Compared to that

approach, the GCov specification test has an advantage in that its asymptotic distribution

is known, while the asymptotic distribution of the Davis and Wan test statistic needs to be

found by bootstrap. Chu (2023) also uses the distance covariance approach and considers

the null hypothesis of residual independence. Although the theoretical test statistic proposed

by Chu has a known limiting distribution, in practice, it needs to be approximated, and the

critical values have to be found by bootstrap. For data analysis in the frequency domain, the

inference methods of Velasco and Lobato (2018) are available, but are not discussed here as

the focus of our paper is on the time domain only.

This paper also makes a contribution to the practice of time series analysis. There exists a

growing literature on the SVAR models, motivated by the fact that the identification problem

3It achieves the parametric efficiency for well-chosen nonlinear transformations.
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arising in these models can be solved by assuming that the structural shocks are independent

and non-Gaussian. In applied research, residual diagnostics are often disregarded, likely

because applying multiple Liung Box tests to the data and then to the model residuals

and their powers, for example, is too cumbersome. Then, the model selection is based

only on the goodness of fit criteria. For example, Guay (2021) and Keweloh (2020) assume

in their applications that the residuals are independent and chi-square distributed without

testing them for the absence of (non)linear serial dependence, or else the test results are

not reported. Gourieroux, Monfort and Renne (2017) use unspecified portmanteau tests to

justify the fit of their model without reporting the residual diagnostic check results either.

Gourieroux, Monfort and Renne (2018) write that the Box and Pierce (1970) and Ljung and

Box (1978) tests of the null hypothesis of no auto-correlation in the residuals were applied.

Lanne, M., and J. Luoto (2019) comment on the absence of residual serial correlation without

specifying how it was determined. Lanne, Meitz, and Saikkonen (2017) provide the most

detailed description of applying the Ljung-Box test to the residuals and provide the p-values.

This applied research would benefit from a convenient one-step test designed for detecting

nonlinear dependence in the residuals.

While the GCov-based specification test is applicable to a variety of models with i.i.d.

non-Gaussian errors, it is particularly useful for testing the fit of causal-noncausal dynamic

models with non-Gaussian errors. This is because the nonlinear autocovariances identify

the noncausal dynamics [Chan et al. (2006)]. There is a growing interest in the univariate

and multivariate mixed causal-noncausal models for processes with locally explosive pat-

terns, such as the short-lasting trends, bubbles and spikes, and time-varying volatility [see

e.g. Hecq et al. (2016), (2020), Gourieroux, Jasiak (2017), (2023), Gourieroux, Zakoian

(2017), Fries, Zakoian (2019), Hecq and Voisin (2021), Swensen (2022), Davis, Song (2020)].

In practice, the locally explosive patterns characterize the time series of commodity prices,

including oil, soybean, nickel, and aluminum prices and cryptocurrency prices of native cryp-

tocurrency, tokens, and some stablecoins. The estimators available for this class of models

are the aforementioned semi-parametric GCov estimator [Gourieroux, Jasiak (2017), (2023)]

and the parametric (Approximate) Maximum Likelihood (AML), or ML estimators [Lanne,

Saikkonen (2011), Davis, Song (2020)]. When the error distribution of a mixed model is

misspecified, the AML estimator can be unreliable [Hecq, Lieb and Telg (2016)], adversely

affecting the outcomes of any ML-based fit criteria, such as the AIC, Schwartz and Hannan-

Quinn criteria. Hence, in these models, the proposed tests arise as convenient tools for both

detecting nonlinear serial dependence in the data and testing the goodness of fit.

We examine the finite sample performance of the GCov specification test analytically
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under a sequence of local alternatives to study the hypotheses about the parameters of a

semi-parametric model. Our simulation study shows that the NLSD, GCov specification, and

GCov bootstrap tests perform well in detecting nonlinear serial dependence in mixed causal-

noncausal processes and the residuals of univariate (MAR) and multivariate autoregressive

VAR models, respectively. The semi-parametric GCov specification test for the residuals

successfully detects the correct fit in various models and is a valuable diagnostic tool. We

also evidence the good performance of the GCov bootstrap test applied to the residuals of

a model estimated by the AML estimator. We illustrate empirically the GCov specification

test applied to a mixed causal-noncausal autoregressive (MAR) model of commodity prices

estimated by the AML method.

The following notation is used. For anym×nmatrix A with the jth column aj, j = 1, ..., n

vec(A) will denote the column vector of dimension mn defined as:

vec(A) = (a′1..., a
′
j, ..., a

′
n)

′,

where the prime denotes a transpose. For any two matrices A ≡ (aij) and B, the Kronecker

product (A⊗B) is the block matrix with the (i, j)th block denoted by aijB.

The paper is organized as follows. Section 2 introduces the new linear and non-linear se-

rial dependence NLSD test for time series inspired by the classical multivariate portmanteau

test, which is briefly reviewed. Section 3 reviews the GCov estimator and the existing GCov

specification test based on the portmanteau test statistic with nonlinear autocovariances of

residuals of a model estimated by the GCov estimator. It provides new results on the asymp-

totic properties of this test under a sequence of local alternatives. Section 4 examines how

the asymptotic performance of the test can be improved by increasing the number of non-

linear autocovariances. Section 5 introduces the new GCov bootstrap-adjusted specification

test. Section 6 presents the simulation results. Section 7 shows an empirical application of

the specification test to a mixed causal-noncausal model fitted to monthly aluminum prices

recorded between 2005 and 2024. Section 8 concludes. The technical results are given in

Appendices A, B, and additional empirical results appear in Appendix C.

2 NLSD Test for Non-Gaussian Processes

This section introduces the new linear and nonlinear serial dependence (NLSD) test for non-

Gaussian processes based on a portmanteau statistic involving nonlinear transformations of

strictly stationary univariate or multivariate time series with non-Gaussian marginal distri-

butions and nonlinear dynamics.
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The linear and nonlinear dependence test considered in this paper technically concerns

the null hypothesis of zero values of autocovariances/autocorrelations of the transformed se-

ries. For processes with Gaussian distributions, zero-valued autocovariances are equivalent

to serial independence, which becomes the null hypothesis of interest. Then, the asymp-

totic distribution of the test statistics for testing the independence hypothesis is determined

under this null hypothesis. In the case of non-Gaussian processes, zero-valued linear auto-

covariances do not imply serial independence. For this reason, we consider testing for the

absence of (non)linear serial dependence. By analogy to the traditional literature, we use the

independence hypothesis to derive the asymptotic distributions of the test statistics.

2.1 Linear Serial Dependence Test for Univariate and Multivariate
Time Series

Let us recall the results that exist in the literature on the test of weak white noise hypothesis,

i.e. of the absence of linear dependence.

2.1.1 Univariate Time Series

Let us consider a univariate stationary time series (yt) with finite fourth-order moments4. The

test of weak white noise hypothesis H0 = {γ(h) = 0, h = 1, ...., H}, with γ(h) = Cov(yt, yt−h)

is commonly based on the test statistic:

ξ̂T (H) = T
H∑
h=1

ρ̂(h)2 = T
H∑
h=1

γ̂(h)2

γ̂(0)2
, (2.1)

where γ̂(h) and ρ̂(h) are the sample autocovariance and autocorrelation of order h, respec-

tively, computed from a sample of T observations5.

Under the null hypothesis of independence and standard regularity conditions, this statis-

tic follows asymptotically a chi-square distribution χ2(H) with H degrees of freedom [see

Box, Pierce, 1970]. The following two subsections introduce an analogous test statistic for

testing for the absence of (non)linear serial dependence in strictly stationary univariate or

multivariate processes.

4The existence of moments up to order 4 is needed for deriving the asymptotic variance of γ̂(h) under the
asymptotic normality.

5In this Section the index T of the estimators, e.g. γ̂T (h) is omitted to simplify the notation.
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2.1.2 Multivariate Time Series

Let us now consider a strictly stationary time series (Yt) of dimension n with finite fourth-

order moments. The null hypothesis is H0 = {Γ(h) = 0, h = 1, ...., H}, where Γ(h) =

Cov(Yt, Yt−h) is the autocovariance of order h. The multivariate equivalent of the test statistic

(2.1) is:

ξ̂T (H) = T

H∑
h=1

Tr[R̂2(h)], (2.2)

where R̂2(h) is the sample analogue of the multivariate R-square defined by:

R2(h) = Γ(h)Γ(0)−1Γ(h)′Γ(0)−1. (2.3)

Since

R̂2(h) = Γ̂(0)1/2[Γ̂(0)−1/2Γ̂(h)Γ̂(0)−1Γ̂(h)′Γ̂(0)−1/2]Γ̂(0)−1/2, (2.4)

this matrix is equivalent up to a change of basis to the matrix within the brackets, which

is symmetric and positive-definite. Therefore, it is diagonalizable, with a trace equal to the

sum of its eigenvalues, which are the squares of the canonical correlations between Yt and

Yt−h, denoted by ρ̂2i (h), i = 1, ...., n [Hotelling (1936)]. Therefore:

ξ̂T (H) = T
H∑
h=1

Tr[Γ̂(h)Γ̂(0)−1Γ̂(h)′Γ̂(0)−1] = T
H∑
h=1

[
n∑
i=1

ρ̂i(h)
2].

Under the null hypothesis of strong white noise, this statistic follows asymptotically a chi-

square distribution χ2(nH) [see, e.g. Robinson (1973), Anderson (1999), Section 7, Anderson

(2002), Section 5].

2.2 Nonlinear Serial Dependence Test for Time Series

Let us extend the results presented so far and introduce a portmanteau (NLSD) test based

on nonlinear functions of a strictly stationary time series yt with a non-Gaussian distribu-

tion. The results of Section 2.1 suggest that the null hypothesis of the absence of (non)linear

dependence in univariate or multivariate time series yt can be tested by applying the test

statistic ξ̂T (H) to a vector of nonlinear transformations of yt. It follows from Chan et al.

(2006) and Gourieroux, Jasiak (2023) that the nonlinear autocovariances, i.e. the autocovari-

ances of nonlinear functions of (yt) identify and thus account for the nonlinear and noncausal

(i.e., future dependent) serial dependence as well.
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To build the NLSD test, we compute the test statistics ξ̂T (H)a from nonlinear transforms

Y a
t of a univariate or multivariate non-Gaussian time series yt, where a is a nonlinear function

satisfying the regularity conditions given in Gourieroux, Jasiak (2023), and are continuous

and differentiable.

Let us consider a vector of such nonlinear functions a of a univariate strictly stationary

process yt. That vector increases the dimension of yt by appending it with the nonlinear

functions of yt, such as the squares or logarithms. In particular if (yt) has no finite fourth-

order moment, then it can be replaced by a transformed multivariate process Y a
t with a finite

fourth-order moment to ensure the validity of the asymptotic distributional results under the

null hypothesis.

For ease of exposition, let us introduce K nonlinear functions a1, ..., aK of the process

(yt), transforming it into a multivariate process of a higher dimension, denoted by K with

components ak(yt):

Y a
t =


a1(yt)

...

aK(yt)

 ,

where a1(yt) = yt is the time series itself, allowing the test to capture the linear dependence.

We compute the sample autocovariances of the transformations ak(yt), k = 1, ..., K:

Γ̂a(h) =
1

T

T∑
t=h

Y a
t Y

a′

t−h −
1

T

T−1∑
t=h

Y a′

t

1

T

T∑
t=h+1

Y a
t−h.

Once a set of transformations is determined, the null hypothesis becomes:

H0,a = (Γa(h) = 0, h = 1, ..., H),

allows us to test for the absence of (non)linear dependence. Because one cannot consider

all the lags and nonlinear transformations, the null hypothesis of the absence of (non)linear

dependence is not equivalent to the independence condition, but is arbitrarily close to it,

depending on lag H and the number of nonlinear transformations considered. Then, the

NLSD test statistic:

ξ̂T (H)a = T

H∑
h=1

TrR̂2
a(h) (2.5)

where
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R̂2
a(h) = Γ̂a(h)Γ̂a(0)

−1Γ̂a(h)
′Γ̂a(0)

−1],

is computed from the nonlinear sample autocovariances, i.e. the autocovariance matrices of a

transformed univariate or multivariate process. In each case, the dimension of the process is

increased, i.e. becomes higher than that of the initial time series of interest. If the combined

dimension of the process is K, then under serial independence, the NLSD test statistic (2.5)

follows asymptotically a χ2(K2H) distribution [see, e.g. Robinson (1973), Chitturi (1976),

Anderson (1999), Section 7, Anderson (2002), Section 5]. The test of the null hypothesisH0 at

level α is performed as follows: the null hypothesis H0 is rejected when ξ̂T (H) > χ2
1−α(K

2H)

and H0 is not rejected otherwise.

For practical implementations, it is easy to show that the NLSD test statistic is invariant

with respect to the scale effect and change of sign of yat . Let us consider a diagonal matrix

A:

A =

 λ 0

0 λ2


where λ represents the scale effect or the change of sign effect for λ = −1. Then the

multivariate R-square of process yat = [yt, y
2
t ]

′:

R2
a(1) = Γa(1)Γa(0)

−1Γa(1)
′Γa(0)

−1

computed for the rescaled process Ayat is:

R̃2
a(1) = AΓa(1)A[AΓa(0)A]

−1A′Γa(1)
′A′ [AΓa(0)A]

−1

= AΓa(1)AA
−1Γa(0)

−1A−1AΓa(1)
′AA−1Γa(0)

−1A−1

= AΓa(1)Γa(0)
−1Γa(1)

′Γa(0)
−1A−1

Hence, we find that the multivariate R-square of the transformed process is AR2
a(1)A

−1. We

see that its trace is

Tr(R̃2
a(1)) = Tr(AR2

a(1)A
−1) = Tr(R2

a(1)AA
−1) = TrR2

a(1),

which implies that the test statistic TTrR̃2
a(1) = TTr(AR2

a(1)A
−1) remains unchanged and

is equal for yat and Ayat .
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3 GCov Specification Test for Semi-Parametric Models

The NLSD test introduced in Section 2.2 is a special case of the goodness of fit General-

ized Covariance (GCov) specification test introduced by Gourieroux, Jasiak (2023) for semi-

parametric nonlinear models of strictly stationary time series with i.i.d. errors and parameter

vector θ describing their dynamics. In this context, ξ̂T (H) is computed from a multivariate

time series of residuals and their nonlinear transforms instead of an observed time series,

which changes its limiting distribution to χ2(K2H − dim(θ)) [Gourieroux, Jasiak (2023)].

The model and GCov test are reviewed below.

3.1 The Semi-Parametric Model

Let us consider a strictly stationary process (Yt) satisfying a semi-parametric model studied

in Gourieroux, Jasiak (2023):

g(Ỹt; θ) = ut, (3.1)

where g is a known function satisfying the regularity conditions, where dim(g) = dim(ut) =

J , Ỹt = (Yt, Yt−1, . . . , Yt−p), p is a non-negative integer, (ut) is an i.i.d. sequence (not nec-

essarily with mean zero) with a common marginal density function f and θ is an unknown

parameter vector of dimension dim(θ). We assume that the model is well-specified, the true

value of parameter θ is θ0 and the true error density is f0. Moreover, ut is not assumed to

be independent of Ỹt−1. Hence, errors ut are not necessarily interpretable as either causal, or

non-causal innovations.

Similarly, as it was done for testing for the absence of nonlinear dependence in Section

2.2, Model (3.1) can be transformed into a system of higher dimension by considering (linear

and) nonlinear scalar transformations of ut. Let us introduce K nonlinear transformations

a1, ..., aK . Then we have:

ak[g(ỹt; θ)] = ak(ut), k = 1, ..., K,

or, equivalently a[g(ỹt; θ)] = a(ut) ≡ vt, (3.2)

where the transformed process (vt) is also an i.i.d. process. Henceforth, the subscripts of

transformations a are omitted for clarity.
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3.2 The GCov Test

The GCov test of model specification is a test of the null hypothesis of the absence of

(non)linear serial dependence in the ((non)linear transformations of) the residuals of a semi-

parametric model with i.i.d. errors whose distribution is left unspecified. The test statistic for

testing the model specification is the portmanteau test statistic evaluated at θ̂T [Gourieroux,

Jasiak (2023)]:

ξ̂T (H) = TLT (θ̂T ), where LT (θ̂T ) =
H∑
h=1

Tr[R̂2
T (h, θ̂T )], (3.3)

and

R̂2
T (h, θ) = Γ̂T (h; θ̂T )Γ̂T (0; θ̂T )

−1Γ̂T (h; θ̂T )
′Γ̂T (0; θ̂T )

−1 (3.4)

The estimated autocovariances Γ̂T (h; θ̂T ) are the sample autocovariances of the residuals

ût,T = ut(θ̂T ) = g(Ỹt, θ̂T ) evaluated at the GCov estimator θ̂T of θ 6:

θ̂T (H) = Argminθ

H∑
h=1

Tr[R̂2
T (h, θ)]. (3.5)

Under the null hypothesis of the absence of linear or nonlinear serial dependence, ξ̂T (H)

follows asymptotically the chi-square distribution with degrees of freedom equal to K2H −
dimθ [see, Gourieroux, Jasiak (2023), Proposition 4]. This result holds only for the GCov

estimator θ̂T .

The GCov estimator is a one-step estimator introduced in Gourieroux, Jasiak (2023):

θ̂T (H) = Argminθ

H∑
h=1

Tr[R̂2
T (h, θ)]. (3.6)

When the model (3.1) is well-specified, the GCov estimator is consistent, asymptotically nor-

mally distributed and attains a semi-parametric efficiency bound, under standard regularity

conditions [Gourieroux, Jasiak (2023), assumptions A.1, A.2 and Proposition 3].

The Gcov specification test is applicable as a diagnostic tool to a variety of dynamic

models, with i.i.d. non-Gaussian errors, including the following:

Example 1: Double Autoregressive Models

i) The Double-Autoregressive (DAR) model [Ling (2007)] is:

6They have to be divided by T instead of (T −H − p) to ensure that the sequence of multivariate sample
autocovariances remains positive semi-definite.
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yt = ϕyt−1 + ut

√
w + αy2t−1,

where w > 0, ϕ ≥ 0, α ≥ 0, θ = (w, ϕ.α)′ and the ut’s are i.i.d. with a Gaussian or non-

Gaussian distribution. We assume that E(log|ϕ +
√
αu|) < 0 and the regularity conditions

on functions θ, f are satisfied, ensuring the existence of a strictly stationary solution. Then,

the semi-parametric representation (3.1) of this model is

g(ỹt; θ) = [(yt − ϕyt−1)/
√
w + αy2t−1 = ut,

This model is strictly stationary for ϕ = 1 due to the volatility induced stationarity effect.

Example 2: MAR(r,s) Model

The mixed noncausal autoregressive MAR(r,s) process is defined as:

(1− ϕ1L− ϕ2L
2 − ...− ϕrL

r)(1− ψ1L
−1 − ψ2L

−2 − ...− ψsL
−s)yt = ut, (3.7)

where the errors are i.i.d., non-Gaussian and such that E(|ut|δ) < ∞ for δ > 0. The

polynomials Φ(L) and Ψ(L) in L are of degrees r and s, respectively, with roots strictly

outside the unit circle and such that Φ(0) = Ψ(0) = 1. For r = s = 1, the MAR(1,1) model

is:

(1− ϕL)(1− ψL−1)yt = ut, (3.8)

where the parameters ϕ and ψ are two autoregressive coefficients, which are strictly less than

one. Coefficient ϕ represents the standard causal persistence, while coefficient ψ depicts non-

causal persistence and determines locally explosive patterns and conditional heteroscedas-

ticity. In the MAR(1,1) we have θ = (ϕ, ψ)′, p = 2 = dim(θ) and the semi-parametric

representation (3.1) of this model is:

g(ỹt; θ) = Φ(L)Ψ(L−1)yt = ut

Example 3: Causal SVAR Model

The multivariate causal SVAR(p) process is defined by:

Yt = Φ1Yt−1 + · · ·+ ΦpYt−p + ut,

where θ = [vecΦ′
1, ..., vecΦ

′
p]

′ and error ut is a multivariate non-Gaussian serially and cross-

sectionally i.i.d. process with finite fourth order moments. The roots of the characteristic

equation det(Id− Φ1λ− · · ·Φpλ
p) = 0 are of modulus strictly greater than one. We have
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g(Ỹt, θ) = Yt − Φ1Yt−1 − · · · − ΦpYt−p = ut.

This model is commonly used in macroeconomic applications.

Example 4: Causal-Noncausal VAR Model

The model is specified as above except that the roots of the characteristic equation det(Id−
Φ1λ − · · ·Φpλ

p) = 0 are of modulus either strictly greater, or smaller than one and the

errors are not assumed cross-sectionally independent. The roots located inside the unit circle

create locally explosive patterns and conditional heteroscedasticity, like in the MAR(r,s)

model. There exists a unique (strictly) stationary solution (Yt) with a two-sided MA(∞)

representation, which satisfies model (3.1) with:

g(Ỹt, θ) = Yt − Φ1Yt−1 − · · · − ΦpYt−p = ut.

The causal-noncausal VAR(p) model has been studied in Gourieroux, Jasiak (2017),(2022),

Davis, Song (2020) and Swenson (2020). The error ut of this model cannot be interpreted as

an innovation.

3.3 Asymptotic Properties of the GCov Test

This section presents new results on the local alternatives and local power of the GCov

specification test to show its validity as a diagnostic test for semi-parametric models with iid

non-Gaussian errors. By focusing on the local alternatives, we can study hypotheses on the

parameters of a semi-parametric model, given the marginal error distribution. The results

below extend the results on the asymptotic distribution of the GCov test statistic derived in

Gourieroux and Jasiak (2023).

3.3.1 Null Hypothesis and Asymptotic Size

Let us clarify the definition of the null hypothesis in the semi-parametric framework. As

mentioned earlier, there are two types of parameters: vector θ defining the dynamics and

functional parameter f defining the error distribution. Then, the theoretical autocovariances

Γ(h; θ, f) are functions of both θ and f . The null hypothesis becomes:

H0 : {Γ0(h) = 0, h = 1, ..., H},

where Γ0(h) is the true autocovariance. In terms of parameters θ, f , it corresponds to Θ0 =

{θ, f : (Γ(h; θ, f) = 0}.
So far, the transformation a has not been introduced to simplify the notation. When

these transformations are accounted for, the null hypothesis becomes:
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H0,a ≈ Θ0,a = {θ, f : Γ0,a(h; θ, f) = 0, h = 1, ..., H}.

When the error terms ut are serially independent, the nonlinear autocovariances Γ0(h) =

0, ∀h. Hence, if the model is correctly specified and H ≥ p, the GCov test of the null

hypothesis H0 tests the absence of linear and nonlinear dependence in the errors ut. Like

in Section 2.2, since one cannot consider all the lags and nonlinear transformations, the null

hypothesis of the absence of (non)linear dependence is not equivalent to the independence

condition, but is arbitrarily close to it, depending on lag H and the number of nonlinear

transformations considered.

The test of the hypothesis H0 at level α is performed as follows: the null hypothesis H0 is

rejected when ξ̂T (H) > χ2
1−α(K

2H−dimθ) and H0 is not rejected otherwise. The asymptotic

size tends to the nominal size when T → ∞:

lim
T→∞

Pθ,f [ξ̂T (H) > χ2
1−α(K

2H − dimθ)] = α, ∀θ, f ∈ Θ0, ∀α.

3.3.2 Local Alternatives and Local Power

Rather than evaluating our test against a fixed alternative, we evaluate it against a sequence of

local alternatives that drift towards the null at rate 1√
T
. The drifting sequence of alternatives

makes it harder and harder to reject the null as the sample grows. The evaluation of the test

under several types of local alternatives is hence related to real situations when one has a

relatively small amount of data [Davidson, MacKinnon (2006), Section 3, Escanciano (2007),

Section 2.3, Dovonon, Hall, Kleibergen (2020), Section 4].

Because the semi-parametric model depends not only on the vector of dynamic parameters

θ but also on the functional parameter f , the general alternative hypothesis is difficult to

formulate [see Section 4.1 for the discussion of implicit null and alternative hypotheses]. In

particular, the alternative could contain models in which the ut’s are serially dependent.

Then, the parametrization would have to be enlarged to accommodate these cases. In this

section, the transformation a subscripts are again omitted for clarity.

We assume a parametrized (fixed) alternative defined by:

H∗
1 = {θ, γ, f : g∗(Ỹt; θ, γ) = ut, where ut are i.i.d., } (3.9)

with an additional (scalar) parameter γ, a known function g∗, such that g∗(Ỹt; θ, 0) = g(Ỹt; θ)

and the dimension dim(g∗) = dim(ut). Under H∗
1 , the autocovariances depend on θ, γ and

the marginal distribution f of errors ut. These autocovariances are denoted by Γ(h; θ, γ, f).
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The alternative hypothesis is parametrized by θ, γ, f . In terms of the autocovariances

(skipping the transformation subscript a), the (fixed) alternative hypothesis is:

H1 = {θ, γ, f : Γ(h; θ, γ, f) = 0, h = 1, ..., H}

and the null hypothesis is:

H0 = {θ, γ, f : Γ(h; θ, 0, f) = 0, h = 1, ..., H} = {γ = 0}

Let us consider the hypothesis testing in the context of a conditionally heteroscedastic

model [Dovonon, Hall, Kleibergen (2020)]. The local alternatives concern here the presence

of serial dependence at higher lags in 1. the conditional mean of the process, or 2. the

conditional variance, or both (3.).

Example DAR(1) model The (fixed) alternatives are for example:

1. yt = ϕ1yt−1 + γyt−2 + ut
√
w + αy2t−1

and H∗
11 : ut = (yt − ϕ1yt−1 − γyt−2)/

√
w + αy2t−1 = g∗(Ỹt; θ, γ)

2. yt = ϕ1yt−1 + ut
√
w + αy2t−1 + γy2t−2

and H∗
12 : ut = (yt − ϕ1yt−1)/

√
w + αy2t−1 + γy2t−2 = g∗(Ỹt; θ, γ)

3. yt = ϕ1yt−1 + γyt−2 + ut
√
w + αy2t−1 + γy2t−2

and H∗
13 : ut = (yt − ϕ1yt−1 − γyt−2)/

√
w + αy2t−1 + γy2t−2 = g∗(Ỹt; θ, γ)

4. yt = ϕ1yt−1 + (ut + γut−1)
√
w + αy2t−1

and H∗
14 : ut = ( 1

1−γL)
[
(yt − ϕ1yt−1)/

√
w + αy2t−1

]
for γ ̸= 1. We see that ut ̸= g∗(Ỹt; θ, γ)

with Ỹt = Yt−1, ..., Yt−p where p is a fixed lag. Therefore, we will not be able to test against

this alternative hypothesis.

The local alternatives are defined in a neighborhood of the true value θ0, f0 satisfying the

null hypothesis. We consider parametric directional alternatives where:

θT ≈ θ0 + µ/
√
T , γT ≈ ν/

√
T , fT ≈ f0.

Example DAR(1) model The local alternatives of the DAR model obtained by Taylor

expansion about γ = 0 for (fixed) hypotheses 1 to 3 given above are:

1. yt = ϕ1yt−1 + γyt−2 + ut
√
w + αy2t−1

and H∗
L11 : ut = (yt − ϕ1yt−1 − γyt−2)/

√
w + αy2t−1 = g∗(Ỹt; θ, γ)

2. yt ≈ ϕ1yt−1 + ut

[√
w + αy2t−1 +

γ
2

y2t−2√
w+αy2t−1

]
and H∗

L12 : ut ≈ (yt − ϕ1yt−1)/

[√
w + αy2t−1 +

γ
2

y2t−2√
w+αy2t−1

]
≈ g∗(Ỹt; θ, γ)
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3. yt ≈ ϕ1yt−1 + γyt−2 + ut

[√
w + αy2t−1 +

γ
2

y2t−2√
w+αy2t−1

]
and H∗

L13 : ut ≈ (yt − ϕ1yt−1 − γyt−2)/

[√
w + αy2t−1 +

γ
2

y2t−2√
w+αy2t−1

]
≈ yt−ϕ1yt−1√

w+αy2t−1

− γ

[
yt−2√
w+αy2t−1

+ 0.5
(yt−ϕ1yt−1)y2t−2

(w+αy2t−1)
3/2

]
≈ g∗(Ỹt; θ, γ)

Under the sequence of local alternatives, we consider doubly indexed sequences (yT,t), i.e.

a sequence of processes indexed by T (triangular array). In this framework, what matters is

the local impact on the autocovariances, i.e.:

Γ(h; θT , γT , f0) ≈ Γ(h; θ0, 0, f0) +
∂Γ(h; θ0, 0, f0)

∂θ′
(θT − θ0) +

∂Γ(h; θ0, 0, f0)

∂γ′
(γT − γ0),

with Γ(h; θ0, 0, f0) = 0. This leads to a local alternative written on the autocovariance:

Γ(h; θT , γT , f0) = ∆(h; θ0, f0, µ, ν)/
√
T (3.10)

with

∆(h; θ0, f0, µ, ν) =
∂Γ(h; θ0, 0, f0)

∂θ′
µ+

∂Γ(h; θ0, 0, f0)

∂γ′
ν. (3.11)

Its vec representation is denoted by δ(h; θ0, f0, µ, ν) = vec∆(h; θ0, f0, µ, ν).

Then, the asymptotic local power of the test, given f0 fixed, is

lim
T→∞

PθT ,γT ,f0 [ξ̂T (H) > χ2
1−α(K

2H − dimθ)] = β(θ0, f0, µ, ν;α),

for any µ, ν, α and (θ0, f0) ∈ Θ0.

Proposition 1: Under the sequence of local alternatives, and the regularity conditions

of Appendix B,

i) The autocovariance estimator

Γ̂T (h; θ) =
1

T

T∑
t=1

g(yT,t; θ)g
′(yT,t−h; θ)−

1

T

T∑
t=1

g(yT,t; θ)
′ 1

T

T∑
t=1

g(yT,t; θ)

converges in probability to

Γ̂T (h; θ) → Γ(h; θ0, 0, f0, θ),

for all θ, h where the limit is computed under the null hypothesis. This convergence is uniform

in θ.

ii) The GCov estimator converges in probability to θ0:
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θ̂T → θ0

Proof: The proof is based on the Law of Large Numbers (LLN) for doubly indexed sequences

[see e.g. Andrews (1988), Newey (1991) and Appendix B for regularity conditions]. The LLN

implies the convergence of the estimated autocovariances.

Let us now discuss the convergence of the GCov estimator. The objective function:

LT (θ) =
H∑
h=1

Tr[Γ̂T (h; θ)Γ̂T (0; θ)
−1Γ̂T (h; θ)

′Γ̂T (0; θ)
−1] (3.12)

tends to

L∞(θ) =
H∑
h=1

Tr[Γ(h; θ0, 0, f0, θ)Γ(0; θ0, 0, f0, θ)
−1Γ(h; θ0, 0, f0, θ)

′Γ(0; θ0, 0, f0, θ)
−1]. (3.13)

This limit is the same as the limit of the objective function under the null hypothesis. Then,

the consistency is proven as in Gourieroux, Jasiak (2023).

Let us show that the test statistic converges in distribution under local alternatives to

a non-central chi-square distributed variable with a non-centrality parameter involving the

direction of the perturbation. Below, we derive the distribution of the test statistic computed

from the residuals of the model g(yt, θ) = ut estimated by the GCov estimator under the

sequence of local alternatives. The proof is given in Appendix B and based on the Central

Limit Theorem (CLT) for doubly indexed sequences [see e.g. Wooldridge, White (1988) and

Appendix B].

Proposition 2: Let us consider the specification test of the null hypothesis:

H0 = Θ0 = {θ, f : Γ(h; θ, f) = 0 ∀h = 1, ..., H},

against the sequence of local alternatives:

H1,T = Θ1,T = {θ = θ0 + µ/
√
T , γ = ν/

√
T , f = f0, with (θ0, f0) ∈ Θ0}.

The expansion of the test statistic under the sequence of local alternatives is:

ξ̂T (H) = T
H∑
h=1

{vec[
√
T Γ̂T (h; θT , γT , f0)]Π(h; θ0, f0)vec[

√
T Γ̂T (h; θT , γT , f0)]}+ op(1), (3.14)
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where

Π(h; θ0, f0) = [Γ0(0, θ0, f0)
−1 ⊗ Γ0(0, θ0, f0)

−1]− [Γ0(0, θ0, f0)
−1 ⊗ Γ0(0, θ0, f0)

−1]
∂vecΓ(h, θ0, f0)

∂θ′{
∂vecΓ(h, θ0, f0)

′

∂θ
[Γ0(0, θ0, f0)

−1 ⊗ Γ0(0, θ0, f0)
−1]

∂vecΓ(h, θ0, f0)

∂θ

}−1

×∂vecΓ(h, θ0, f0)
′

∂θ′
[Γ0(0, θ0, f0)

−1 ⊗ Γ0(0, θ0, f0)
−1].

Then, under the sequence of local alternatives, ξ̂T (H)
a∼ χ2(K2H − dimθ, λ(θ0, f0, µ, ν)),

where the non-centrality parameter is

λ(θ0, f0, µ, ν) =
H∑
h=1

δ(h; θ0, f0, µ, ν)
′Π(h; θ0, f0)δ(h; θ0, f0, µ, ν)),

with δ(h; θ0, f0, µ, ν) =
∂Γ(h;θ0,0,f0)

∂θ′
µ+ ∂Γ(h,θ0,0,f0)′

∂γ′
ν.

Proof: The proof of Proposition 2 is given in Appendix B.

Let the cumulative distribution function (c.d.f.) of the non-central chi-square distribution

be denoted by F (x;κ, λ), where κ denotes the degrees of freedom and λ is the non-centrality

parameter. Moreover, F (x;κ, λ) = 1−Qκ/2(
√
λ,

√
x), where Qδ(a, b) is a Marcum Q-function.

For positive integer values of δ it is defined as:

Qδ(a, b) =


Hδ(a, b) a < b,

0.5 +Hδ(a, a), a = b

1 +Hδ(a, b), a > b

where Hδ(a, b) = ζ1−δ

2π
exp(−a2+b2

2
)
∫ 2π

0
cos(δ−1)w−ζcos δ w

1−2ζcosw+ζ2
exp(ab cosw)dw and ζ = a/b. Then,

from Proposition 1, it follows that the local asymptotic power is given by:

β(θ0, f0, µ, ν;α) = Q(K2H−dimθ)/2[
√
λ(θ0, f0, µ, ν),

√
χ2
1−α(K

2H − dimθ)].

From the monotonicity property of the Q-function, it follows that the local asymptotic

power function is a strictly decreasing function of the non-centrality parameter.

4 Increasing the Set of Autocovariance Conditions

In this section we discuss how the asymptotic performance of the GCov portmanteau test of

the independence hypothesis can be improved by increasing the number of nonlinear transfor-

mations, and possibly by taking into account an infinite number of autocovariance conditions.
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4.1 Implicit Null and Alternative Hypotheses

The GCov estimator has been applied so far using a finite set of zero unconditional auto-

covariance conditions, and given an autoregressive order H and a set of K nonlinear error

transformations. If this set allows us to identify parameter θ, then the test is necessar-

ily asymptotically locally the most powerful for the associated implicit null and alternative

hypotheses.

At this point, it is important to compare the implicit null and alternative hypotheses

considered with those of potential interest. More specifically, we could consider the following

hypotheses that concern the distribution f of the process (ut):

i) H0,A = {f : Cov[a(ut), α(ut−h)] = 0, ∀h, ∀a, α ∈ A} and also the associated alternative

H1,A. Those hypotheses depend on the selected set A of transformations.

ii) H0,pair = {f : ut, and ut−h are independent, ∀h} and its alternative H1,pair.

iii) H0,ind = {f : ut, ut−1, ..., ut−h are independent ∀t, h} and its alternative H1,ind.

iv) H0,iid = {f : u′ts are iid} and its alternative H1,iid.

We have H0,A ⊃ H0,pair ⊃ H0,ind ⊃ H0,iid and H1,A ⊂ H1,pair ⊂ H1,ind ⊂ H1,iid.

The test of H0,A is consistent and of asymptotic power of 1 against H1,A. However, this

test is not of asymptotic power 1 for H1,pair, H1,ind and H1,iid. By increasing the set of

nonlinear transformations a in A, we hope to increase the set of alternatives against which

the asymptotic power of the test is 1.

4.2 The Semi-Parametric Efficiency Bound

The asymptotic performance of the GCov portmanteau test is linked to the asymptotic

properties of the GCov estimator of parameter θ. Let us now distinguish the semi-parametric

models and the associated semi-parametric efficiency bounds, which are:

i) The semi-parametric efficiency bound that accounts for the pairwise independence

between ut and ut−h for any h.

ii) The semi-parametric efficiency bound that takes into account the joint independence

of ut, ut−1, ..., ut−h, since the pairwise independence does not imply the joint independence.

iii) The semi-parametric efficiency bound that also takes into account the fact that the

ut’s are identically distributed. The example given below shows that this efficiency bound

coincides with the parametric efficiency bound.

In the framework of nonlinear autocovariance-based test statistics with a one-step GCov

estimator, we could attain only the first semi-parametric efficiency bound i), but not the

parametric efficiency bound under H0,iid, which requires a two-step approach as shown in the
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example below.

Example: Adaptive Estimator

Let θ̂T denote a GCov estimator based on a finite set A of nonlinear transformations.

Given this consistent estimator, we can compute the residuals ûT,t, t = 1, ..., T of the model

and then estimate nonparametrically the true density f0 of ut by the kernel-based density

f̂T (u) based on the residuals ûT,t, t = 1, ..., T . Next, in the second step, parameter θ can be

estimated by a pseudo-maximum likelihood method, where the true density f0 is replaced

by f̂T (u) [see e.g. Bickel (1982), Newey (1988)]. Under standard regularity conditions, this

leads to a two-step estimator that reaches the parametric efficiency bound. Because of this

improvement of the asymptotic properties of the GCov estimator, the pseudo-likelihood ratio

test based on this two-step estimator will have better asymptotic power properties.

4.3 How to Choose an Infinite Set of Transformations

The asymptotic properties of the GCov estimator and of the associated test statistics can be

improved by increasing the finite set of nonlinear zero autocovariance conditions to a larger

finite, or infinite set.

The extension to an infinite set of nonlinear autocovariance conditions is easy when these

conditions correspond to an orthonormal basis of the Hilbert space L2(ut, ut−1, ...). In our

framework, we can increase the set of nonlinear autocovariance conditions either by increasing

the maximum lag H, or the set of transformations. We saw that, under the null hypothesis,

the orthogonality of nonlinear autocovariance conditions with respect to the lag is satisfied.

This explains the simplified form of the test statistic written as a sum of terms associated

with lags h = 1, ..., H.

In contrast, the set of nonlinear transformations does not necessarily correspond to an

orthonormal basis, and inverting the variance matrix of a large dimension can become a

problem from both the theoretical and computational perspectives. The standard approach

consists in considering a (large) infinite set of square-integrable transformations of ut, ...ut−h,

and orthonormalizing them progressively7. This requires:

1: Considering an infinite set of transformations that allows for identifying the unknown

distribution f0 of ut.

2: Ranking the transformations in a countable sequence of transformations and orthonor-

malizing it in the Hilbert space. The ranking has to be done carefully to avoid any information

7Note that it is always possible to get an orthonormal basis of transformations of ut, ut−h by considering
the product of an orthonormal basis of ut and a (possibly the same) orthonormal basis of ut−h.
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loss. It is facilitated if the set of transformations admits a countable dense subset [see, e.g.

Bierens (1990), Corollary 1, for such a subset of exponential transforms, Royden (2010) for

orthonormalization in the Hilbert space].

Let us now discuss how to select the basis of transformations (in addition to ut and the

transformation u2t that can be informative of some parameters). An important feature of the

causal-noncausal models considered in our paper are the extreme risks and their persistence

that create the local explosive patterns, including the bubbles. This implies that the error

does not necessarily have power moments. Moreover, some of the parameters driving those

extreme risks, may be non-identifiable from the transformations ut, u
2
t only. In addition, we

may have to disentangle the negative and positive extreme risks.

In this respect, some standard linear systems of generators are not convenient. For ex-

ample: i) the polynomial transformations of ut cannot be used if ut has no moments of order

greater than 3; ii) The sine-cosine transformations are not informative of the tail parameters

[see e.g. Wan and Davis (2022), Fokianos and Pitsillou (2018) for a test of the independence

hypothesis based on a joint characteristic function]. The same remark applies to the standard

bases of splines.

A natural choice is a system of generators that assigns weights to the standard polynomials

with the selected weights ensuring their square integrability. Let us discuss how to choose

these weights. For ease of exposition, let us consider a process with positive errors ut, and

with trajectories admitting positive and increasing bubbles only caused by a large positive

shock to ut. Let us also consider a univariate process8. Then, a linear system of generators

is:

A = {at,p(u) = up exp(−tu), p ∈ N , t ∈ [0, 1]},
with a countable dense subsystem given by:

An = {atj ,n(u) = up exp(−tj,nu), p ∈ N , tj,n ∈ [0, 1], j = 1, ...n},
and (t1,n, ..., tj,n) which is dense in [0, 1] when n tends to infinity [see Bierens (1990), page

1448, for a similar approach for a bounded variable u and generators an(x) = αn,0 +∑n
j=1 αn,j exp(t

′
ju).].

The limiting system An with n → ∞ allows for identifying the distribution of u, which

follows from the proposition below, with the inversion formula of the real Laplace transform

called the Post’s inversion formula [Post (1930), Feller (1971), Chapter 13, for the modern

proof].

8The extension to a multivariate ut is performed by crossing the generators of univariate ut’s (see, Section
4.4).
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Proposition 3: The System of Generators

Let us assume a distribution of U with continuous density f0(u) such that:

supu>0 f0(u)/ exp(bu) <∞, for some b > 0.

i) The distribution of U is characterized by the knowledge of the Laplace transform:

Ψ(t) = E[exp(−tU)], t ∈ [0, 1].

ii) A system of generators is A∗ = {at(u) = exp(−tu), t ∈ [0, 1]}.
iii) The Post’s inversion formula is:

f0(v) = lim
n→∞

1

n!

(n
v

)n+1

E[Un exp
(
−n
v
U
)
], ∀v a.e.

Note that A∗ = {at(u) = exp(−tu), A ∈ [0, 1]} is not necessarily a convenient system

of generators, since we do not know if f0 can be found from the limit of combinations

of decreasing exponentials only. The Post’s inversion formula shows that the products of

exponentials and polynomials have to be considered. Then, a linear system of generators is:

A = {at,p(u) = up exp(−tu), p ∈ N, t ∈ [0, 1]},

with a countable dense subsystem given by:

An = {atj,n,p(u) = up exp(−tj,nu), p ∈ N, tj,n ∈ [0, 1], j = 1, ..., n},

and (t1,n, ..., tn,n) is dense in [0, 1] when n tends to infinity [see, Bierens (1991), page 1448,

for a similar approach].

The condition imposed on the density function means that the distribution cannot have

a large mass at zero, but its right tail can be of any magnitude.

From the above Proposition it follows that an appropriate weighting is ensured by the

decreasing exponential transforms, which are introduced to provide square integrability of

the power transforms. In fact, only the weights with t close to 0 are useful. To see that,

let us recall that this real Laplace transform Ψ of a positive variable is characterized by its

Taylor series expansion:

E[exp(−tU)] =
∞∑
j=0

tj

j!
µj.

If U admits power moments of any order, we have µj = E(U j), ∀j. In our framework, such

moments may not exist, but regardless this series expansion exists and Taylor’s coefficients

µ3, µ4 define new notions of skewness and kurtosis measures.
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Remark 1: In practice, the Post’s inversion formula does not provide a tractable mean

of inverting the Laplace transform and it is an ill-posed problem [see the remark in the

conclusion of Bryan (2006)]. In this respect, the GCov estimator can be seen as an approach

for solving this ill-posed problem when the objective is to estimate θ. In our test framework,

the Post’s inversion formula is used only to show that A is an adequate linear system of

generators.

Remark 2: Similar results can be obtained if additional information is available on the

magnitude of the tail of the distribution of U , for example, if the tails are Pareto. Then, we

can apply the Hardy-Littlewood Tauberian theorem with a Pareto weighting function.

Remark 3: If the error ut takes both positive and negative values, we can observe ”positive”

and ”negative” bubbles. Then, the weights have to be replaced by exp(−t|U |), and the powers

of U have to be allowed to take positive and also negative signs for odd powers. If ut has a

symmetric distribution, the generators will be at,p = |u|p exp(−t|u|).

In practice, it may be better to limit the number of transformations and choose the

informative transformations for the estimation keeping in mind that the parameters that

are difficult to identify can be revealed either by well-chosen transformations, or by some

standard transformations by increasing the lags H to capture the persistence properties. It

may be useful to consider quadratic transformations along with some decreasing exponential

transformations.

4.4 The Orthonormalization of the System of Generators

It is not possible to construct an exact orthonormal basis from a system of generators since

the true distribution of U under the i.i.d. hypothesis is unknown. In fact, a two-step approach

is required. We derive below the orthonormalization step in the multidimensional case and

discuss the form of the portmanteau statistic in the following subsection. The steps are the

following:

step 1. Consider a finite set A0 of transformations from which θ is identifiable. Estimate θ

by the GCov estimator θ̂T and compute ûT,t, t = 1, ..., T .

step 2. Consider an infinite set A = {a(u) = up11 , ..., u
pJ
J exp(−τ ′u), p1, ..., pJ ∈ N , τ ∈

[0, 1]J}
and the sequence of finite sets An:

An = {a(u) = up11 , ..., u
pJ
J exp(−τ ′j,nu), p1, ..., pJ ∈ (0, 1, ..., Pn), τ1,n, ..., τn,n ∈ [0, 1]J},

where (τ1,n, ..., τn,n) is dense in [0, 1]J when n→ ∞.
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The number of transformations in An is P
J
n J

n, where Kn ≡ P J
n J

n with the elements ak,n, k =

1, ..., Kn ranked in an increasing order:

An = {ak,n, k = 1, ..., Kn = P J
n J

n}.

step 3. Orthonormalization (Hilbert-Schmidt)

ak,n, k = 1, ..., P J
n J

n need to be mapped into an orthonormal basis of a∗k,n, k = 1, ..., Kn

as follows:

We run recursion to get at step m the orthonormal functions a∗k,n, k = 1, ...,m, with zero

mean.

a) The starting point is the following:

Regress a1,n(ûT,t) on the constant:

a1,n(ûT,t) = α1,n,T + ŵ1,n,T,t,

t = 1, ..., T with the residual ŵ1,n,T,t. Next, compute:

a∗1,n,T (u) = ŵ1,n,T (u)/||ŵ1,n,T ||T ,

where ŵ1,n,T (u) = a1,n(u) − α1,n,T . Let R2
1,n,T denote the R-square in the above regression.

Then a∗1,n,T is used if 1 − R2
1,n,T is sufficiently different from 0, i.e. 1 − R2

1,n,T > ϵn,T , where

ϵn,T is a tuning parameter that needs to be appropriately chosen. Otherwise, start from a2,n.

b) Next, a2,n is projected on a∗1,n,T as follows:

We run the regression:

a2,n(ûT,t) = α2,n,T + β2,n,Ta
∗
1,n,T (ûT,t) + ŵ2,n,T,t,

t = 1, ..., T with the residuals ŵ2,n,T,t. Next, compute:

a∗2,n,T (u) = ŵ2,n,T (u)/||ŵ2,n,T ||T ,

where ŵ2,n,T (u) = a2,n(u)−α2,n,T −β2,n,Ta
∗
1,n,T (u). This is possible if ||ŵ2,n,T ||T is sufficiently

different from 0, that arises if 1−R2
2,n,T > ϵn,T . Otherwise, apply to a3,n [see, Bierens (1990),

page 1448 for an analogous approach].

c) The third step is

a3,n(ûT,t) = α3,n,T + β3,1,n,Ta
∗
1,n,T (ûT,t) + β3,2,n,Ta

∗
2,n,T (ûT,t) + ŵ3,n,T,t,

and so on. Since the regressors are orthogonal, the multivariate regressions can be replaced

by simple regressions in practice.
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At the end, we get a set of transformations a∗k,n, k = 1, ..., Kn, which are zero mean and

orthonormal with respect to the sample distributions of ûT,t, t = 1, ..., T .

Since the autocovariance conditions concern pairs ut, ut−h and transformations of the type

a(ut), α(ut−h), we will have to consider transformations in A2
n, where dim(A2

n) = P 2J
n J2n =

K2
n.

4.5 The Two-step Portmanteau Statistic and its Asymptotic Dis-
tribution

The literature on the method of moments and the associated over-identification test statistic

with an infinite number of moments considers, in general, the unweighted rather than opti-

mally weighted objective functions [see e.g. Han and Phillips (2006), Fokianos and Pitsillou

(2018), Escanciano (2007), Wan and Davis (2022)]. The orthonormalization approach out-

lined in Section 4.4 is a solution to solve this difficulty. Indeed, after the orthonormalization,

the objective function has the following expression:

ξn,T (θ) =
H∑
h=1

Kn∑
j=1

Kn∑
k=1

(
1

T

T∑
t=1+h

a∗j,n,T [g(ỹt; θ)]a
∗
k,n,T [g(ỹt−h; θ)]

)2

,

in which the inverse of the variance-covariance matrix is equal to the identity matrix.

At this point, different test statistics can be considered [see the discussion in Han and

Phillips (2006), Section 5], such as:

ξ̂n,T = ξn,T (θ̂T ),

evaluated at the first-step GCov estimator, or

ξ̂n,T = ξn,T (θ̃n,T ), with θ̃n,T = Argminθ ξn,T (θ),

evaluated at the two-step GCov estimator.

We consider below the two-step portmanteau statistic ξ̂n,T . The asymptotic behavior of

this statistic is derived in two steps [see e.g. Koenker, Machado (1999)]:

step 1: We consider the infeasible portmanteau test statistic:

ξ0n,T =
H∑
h=1

Kn∑
j=1

Kn∑
k=1

(
1

T

T∑
t=1+h

a∗j,n[g(ỹt; θ0)]a
∗
k,n[g(ỹt−h; θ0)]

)2

.

where a∗k,n are the transformations obtained by a normalization with the true distribution f0

and θ replaced by θ0.
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step 2: Next, the uncertainty due to the estimation of θ0 and f0 is taken into account.

i) Let us assume that ut has non-negative components, a continuous density f0(u) that

satisfies a tail condition:

sup
u>0

f0(u)/ exp(b
′u) <∞, for some b,

with strictly positive components, ensuring that the transformations in An are uniformly

integrable. Then, under the hypothesis H0,iid of i.i.d. ut = g(ỹt, θ0), for any fixed Kn, the

multidimensional Lindeberg-Feller condition for the convergence in distribution of

1

T

T∑
t=1+h

a∗j,n[ut]a
∗
k,n[ut−h], j, k = 1, ..., Kn, h = 1, ..., H.

to a standard normal N(0, IdK2
nH

) is satisfied.

Then, under an additional tightness condition when Kn tends to infinity, we deduce that

(ξ0n,T −HK2
n)/
√

2HK2
n

d→ N(0, 1),

when T and Kn tend to infinity.

ii) This asymptotic behavior is also satisfied for the two-step statistic ξ̂n,T = ξn,T (θ̃T )

under H0,iid:

(ξ̂n,T −HK2
n)/
√

2HK2
n

d→ N(0, 1),

provided that: a) the first-step estimator θ̂T is consistent, asymptotically Normally dis-

tributed; b) the regularization tuning parameter ϵn,T tends to zero at an adequate rate; c) T

and Kn tend to infinity at a rate such that K2
n/T tends to zero,

These conditions ensure that the uncertainty due to the approximation of θ0 by θ̂T and

of the true orthonormalization by the estimated one are negligible [see e.g. Donovon and

Gospodinov (2024) for a similar argument].

As mentioned earlier, our discussion is focused on the increase of the set An of trans-

formations. It could be possible to also increase the maximum lag H with the number of

observations and get a similar result when T,H,Kn tend to infinity at a rate such that

(HK2
n)/T tends to zero.

The asymptotic results given above are valid for any choice of sequenceAn and the ranking

of transformations in An. However, the choice of sequence An and of transformation ranking

will have an effect in finite sample.
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5 Bootstrap-Adjusted GCov Test

This section describes the bootstrap-adjusted GCov test of a multivariate causal nonlinear

dynamic model and provides the regularity conditions ensuring its validity. The application

of the bootstrap GCov test to noncausal processes and the bootstrap GCov test based on

the AML estimator are illustrated through simulations in Section 6.3.

5.1 Bootstrap Under the Null Hypothesis

Let us now introduce a bootstrap-adjusted GCov test that can be used to correct for the

finite sample bias of the GCov estimator, by providing an asymptotically valid critical value

found by bootstrap.

More specifically, to approximate the distribution of bootstrapped ξ̃T , we compute the

test statistic ξ(H, θ̂sT , f̂
s
T ) with θ̂

s
T and f̂ sT both obtained from the bootstrapped residuals, and

the bootstrapped values ys1, ..., y
s
T . We assume Ỹt = (Yt, Yt−1, ..., Yt−p) ≡ Yt and denote by

c the inverse of function g with respect to yt. Then, the critical value of the test statistic

ξ̃T (H) can be found by bootstrap along the following steps:

1. Draw randomly with replacements T residuals ûsT,t, t = 1, ..., T from residuals ûT,t =

g(Ȳt, θ̂T ), t = 1, ..., T .

2. Build the bootstrapped time series of length T : ysT,t = c(ỹsT,t−1, û
s
T,t, θ̂T ), t = 1, ..., T, s =

1, ..., S 9.

3. Re-estimate the model parameter vector θ by GCov from ysT,t, t = 1, ..., T , providing

θ̂sT , s = 1, ..., S.

Then, under the regularity conditions discussed in Section 5.4, the asymptotic distribu-

tion of
√
T (θ̂sT − θ̂T ) conditional on the sample yt, t = 1, ..., T is the same as the asymptotic

distribution of
√
T (θ̂T − θ0). In particular, the bootstrap tests of hypotheses on θ are asymp-

totically valid under the null.

4. Compute the test statistic ξ̂sT (H) from ûsT,t, t = 1, ..., T , their nonlinear transforms and θ̂sT .

5. Rank the test statistics ξ̂sT (H), s = 1, ..., S, and use the 95th percentile q̂T,95%, say, as the

critical value for testing the null hypothesis of absence of nonlinear or linear dependence.

Then, the null hypothesis is rejected if:

9If the process is a mixed VAR, the bootstrapped values ys1, ..., y
s
T can be computed from ûsT,t using the

formulas in Gourieroux, Jasiak (2017). For a VAR model in a multiplicative representation, see Lanne,
Saikkonen (2013). For univariate MAR(r,s) processes, see Gourieroux, Jasiak (2016).
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ξ̂T > q̂T,95%,

and it is not rejected, otherwise.

5.2 An Extended Continuous Updating GMM

To explain the relation with the current literature on bootstrap applied to overidentification

tests based on either moment or covariance conditions, it is interesting to consider an al-

ternative Continuous Updating GMM (CUGMM) that allows for mean adjustment of each

transformation in the GCov context.

For ease of exposition, let us assume H = 1. To establish this relationship, we need to

introduce an alternative set of moment conditions and an extended set of parameters. More

precisely, let the parameters be denoted by θ, γ, where dim(γ) = J . The moment conditions

are:

E[ak[g(Ỹt, θ)]− γk] = 0, k = 1, ..., K, (5.1)

E{[aj[g(Ỹt, θ)]− γj][ak[g(Ỹt−1, θ)]− γk]} = 0, j, k = 1, ..., K.

Thus, we introduce a first set of conditions that jointly identify the additional set of param-

eters.

Proposition 4:

i) Under the condition of just-identification, dim(θ) = K2, the CUGMM applied to system

(5.1) leads to estimators θ̂T , γ̂T and optimal objective function ξ̂∗T (θ̂T , γ̂T ) such that : θ̂T is

equal to the GCov estimator of θ, ξ̂∗T (θ̂T , γ̂T ) is equal to the optimal GCov objective function.

ii) Under overidentification, dim(θ) < K2, the GCov and CUGMM estimators of θ differ

at order 1/T . The associated test statistics have the same asymptotic chi-square distributions

at the first order, but differ at higher orders.

Proof: i) If dim(θ) = K2, due to the just identification of γ for a given θ, we can

concentrate the CUGMM objective function with respect to γ to get:

γ̂T (θ) =
1

T

T∑
t=1

a[g(Ỹt, θ)].

Next, by plugging in γ̂T (θ) into the CUGMM objective function, we find that the CUGMM

objective function concentrated with respect to γ is equal to the GCov objective function.

The result follows.
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ii) Under overidentification, the mean adjustments underlying the GCov and CUGMM

estimators differ at order 1/T as it is easy to see from the asymptotic Taylor expansions of

the estimators, that is by their biases at order 1/T .

QED.

Since the GCov and extended CUGMM estimators differ asymptotically by the bias at

order 1/T , and the bootstrap methods applied to the above estimators are expected to adjust

for these biases, sufficient regularity conditions for the validity of bootstrap for the GCov

and extended CUGMM, respectively, will be the same.

Remark 4: The effect of demeaning at order 1/T is easy to show when estimating an

autoregressive coefficient in the AR(1) model: yt− ρyt−1 = ut, where ut are i.i.d., with mean

0. Two OLS-type estimators can be considered:

ρ̂T =
∑T

t=2(yt − ȳT )(yt−1 − ȳT )/
∑T

t=2(yt−1 − ȳT )
2, with ȳT = 1

T

∑T
t=1 yt, and

ρ̃T =
∑T

t=2(yt − ȳT )(yt−1 − ỹT−1)/
∑T

t=2(yt−1 − ỹT−1)
2, with ỹT−1 =

1
T−1

∑T
t=2 yt,

The mean adjustments differ at order 1/T .

Remark 5: To illustrate point ii) of the proof, the relationship between GCov and CUGMM

can be used to reinterpret the problem of increasing the set of transformations of Section

4 in terms of GMM. Whereas the dimension of the parameter dim(θ) is fixed when the set

of transformations increases, the dimension of parameter θ, γ will increase from the GMM

perspective and become infinite with an infinite number of transforms.

5.3 Bootstrap Based on GMM or Covariance Estimators

There exists a large literature on bootstrap applied to GMM estimators and the associated

overidentification test statistics. This literature considers the same type of portmanteau

statistics, but the approaches differ with respect to the variables that are initially resampled,

the assumptions on the observations, and the selected moment or covariance conditions.

i) A part of this literature considers a direct resampling of the observations themselves,

usually when the moment conditions are of the type:

Eh(Yi; θ) = 0, with Yi being i.i.d..

[see e.g. Hahn(1996), Hall and Horowitz (1996) for basic bootstrap, Brown and Newey

(2002) for resampling in the empirical likelihood function that imposes the moment condi-

tions, rather than the empirical likelihood, to improve bootstrap efficiency, and Donovon and

Gonzalves (2017), Assumption 1 for CUGMM].

ii) However, a more limited literature considers the time series framework and the residual

(parametric) bootstrap. The approaches can differ with respect to the definition of the resid-
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uals. For example, Inoue and Shintani (2006) consider specific moment conditions of the type

E(ztut) = 0 with ut = yt − θ′0xt, where (xt, yt, zt) is a strictly stationary observable process.

Then, they bootstrap the residuals ûT,t = yt − θ̂′Txt that are demeaned and standardized.

This approach is convenient when the moment conditions are linear in error ut. This model

includes the causal AR(p) models with i.i.d. errors and where zt denotes the lagged values

of yt. It is easy to extend this approach to a nonlinear dynamic framework ut = g(Ỹt, θ) in

our notation, with Ỹt = (Yt, Yt−1, ..., Yt−p), including the ARCH and ARCH-in-mean models

[see Escanciano (2007)].

In our framework, the moment or covariance conditions involve nonlinear transformations

of an error ut and their lagged values. Such a framework is considered in Wan and Davis

(2022) with moment (covariance) conditions of the type E[exp(ivut + iwut+h)], where i =√
−1, and v, w are real numbers (assuming dim(ut) = 1). In Section 5.4, we adopt the type

of regularity conditions introduced in Escanciano (2007) and Wan and Davis (2022) for the

validity of the residual (parametric) bootstrap. A refinement of the bootstrap approximation

is obtained since the test statistic is asymptotically pivotal under the null10.

5.4 Regularity Conditions for Bootstrapping the Test Statistic

In the literature, an approach with a finite number of conditions, which are nonlinear in ut

has not yet been developed. Inoue and Shintani (2007) consider a finite number of moment

conditions that are linear in u. Escanciano (2007) considers an infinite number of moment

conditions linear in u, while Wan, Davis (2022) study an inifinite number of nonlinear sine

and cosine transformations. The approach proposed in our paper is based on a statistic

that is nonlinear in u with a finite number of nonlinear transformations and differs from the

literature in this respect.

For ease of exposition, let us consider H = 1, dim(ut) = 1, ut(θ0) with a symmetric

density f0 satisfying:

sup
u
f0(u)/ exp(b|u|),∞, for b > 0, (5.2)

and a GCov estimator based on a finite number of transformations ak(u) = |u|pk exp(−tk|u|), k =

1, ..., K, where pk, tk are fixed. The tail condition (5.2) ensures the uniform integrability of

10Cavaliere, Nielsen and Rahbek (2020) develop a bootstrap approach for the OLS estimator of the au-
toregressive coefficient ρ in a noncausal AR(1) model: yt = ρyt+1 + ut, where ut has a stable distribution. It
is important to note that the coefficient ρ is not equal to Cov(yt, yt−1)/V ar(yt−1), because the theoretical
moments do not exist. In this respect, the OLS estimator is not a moment (or covariance) estimator.
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all moments Eak(ut(θ0)) by considering transformations that reduce the effect of the tail.

We also assume g(ỹt; θ) = g(yt, ..., yt−p; θ).

We distinguish the following regularity conditions for bootstrap validity:

i) Regularity condition for deriving the asymptotic distribution of the test statistic under

the null hypotheses of i.i.d. errors ut = ut(θ0).

ii) Conditions concerning the third term in the Edgeworth expansion for the refinement

of the bootstrap procedure, if the test statistic is asymptotically pivotal under the null.

iii) Additional regularity conditions to ensure the consistency of the bootstrap approach.

i) Regularity condition for deriving the asymptotic distribution of the bootstrap adjusted

portmanteau test statistic under H0,i.i.d..

A set of sufficient conditions has been given in Gourieroux, Jasiak (2023), Assumptions A.1,

A.2. These include the hypothesis of i.i.d. ut’s, the asymptotic identifiability of parameter

θ, and the assumption of invertibility of limT→∞[ 1
T
∂2ξT (θ0)
∂θ∂θ′

].

As a consequence of these regularity conditions, we have the asymptotic equivalence of

the GCov estimator:

√
T (θ̂T − θ0) ≡

1√
T

T∑
t=1

mT (ut(θ0), θ0) + op(1), (5.3)

where ut(θ0) = (ut, ut−1, ...), and mT (ut, θ0) is a vector-valued function satisfying the mar-

tingale difference sequence condition E(mT (ut, θ0)|ut−1) = 0, E||mT (ut), θ0||2 <∞. Then, we

have the convergence in the distribution of the empirical process constructed from 1√
T
mT (ut(θ0), θ0)

to a Gaussian process (as a triangular array), and we deduce the asymptotic distribution of

the test statistic from the asymptotic expansion of this statistic [see, Gourieroux, Jasiak

(2023) for the expansion].

ii) Conditions for refinement

The function mT in (5.3) is not uniquely defined, since it can always be modified by

a term B(θ0)/T of order 1/T . Additional conditions can be introduced, especially on the

third-order derivatives of g(ỹt, θ) with respect to θ [see, e.g. Leucht and Neuman (2003)].

Then, we get:

√
T (θ̂T − θ0) ≡

1√
T

T∑
t=1

mT (ut(θ0), θ0) + op(1/T ). (5.4)

In this expansion, the function mT depends on the function g and the transforms ak, k =

1, ..., K. It has a closed-form expression, even though it is complicated. In fact, we only

31



need the existence of such an expansion, and the convergence in distribution of the em-

pirical process based on 1√
T

∑T
t=1mT (ut(θ0), θ0) to a Gaussian process. This will imply an

asymptotically pivotal test statistic at order 1 under (5.3), at order 1/T under (5.4).

iii) Regularity conditions to ensure the consistency of the bootstrap under H0,iid.

These conditions have to be introduced for the validity of the bootstrap under the null

hypothesisH0,iid. Below, we describe sets of sufficient conditions introduced inWan and Davis

(2022) that are specific to this step of bootstrap procedure11. They are directly written on

functions mT involved in the expansion (5.3) (resp.(5.4)).

These specific regularity conditions are the assumptions M3, M3’, M1’ in Wan and Davis

(2022). We provide them below for our framework. They are valid for causal models when

ut is a nonlinear innovation of process (yt)
12

Assumption M3: 1√
T

∑T
t=1 |ak(ûT,t)− ak(û∞,t)|m = op(1), k = 1, ..., K, m = 1, 2,

where û∞,t denotes the fitted residual based on an infinite sequence of observations.

Assumption M3’: For any ϵ > 0,

PT [
1√
T

∑T
t=1 |ak(ûsT,t)− ak(û

s
∞,t)|m > ϵ] → 0, k = 1, ..., K, m = 1, 2,

when T tends to infinity, where ûs∞,t denotes the bootstrapped residuals based on an infinite

sequence of observations.

In comparison with the analogous assumption in Wan and Davis (2022), the condition

ut(θ0) = g(yt, ..., yt−p; θ0) is equivalent to exp(−tkut(θ0)) = exp(−tkg(yt, ..., yt−p; θ0)) for ex-
ample. Thus, a part of the nonlinearity is solved by changing the representation of the

nonlinear autoregressive process.

Assumption M1’: For any ϵ > 0 and some τ > 0:

PT (| 1T
∑T

t=1ET [m
′
T (û

s
T,t, θ̂T )mT (û

s
T,t, θ̂T )|ûsT,t−1]− τ 2| > ϵ)

p→ 0,

when T → ∞ and

PT (
1
T

∑T
t=1ET [m

′
T (û

s
T,t, θ̂T )mT (û

s
T,t, θ̂T )1||mT (ûsT,t,θ̂T )||>

√
Tϵ|ûsT,t−1] > ϵ)

p→ 0,

when T → ∞, where PT , ET are taken with respect to the bootstrap sampling conditional

on data, and
p→ is the convergence in probability for the data uncertainty.

Assumption M1’ ensures that the martingale difference sequence condition is asymptoti-

cally satisfied at order 1 for the bootstrapped residuals13

Then, we can apply Theorem 4.2 in Wan and Davis (2022) to obtain the consistency of

the bootstrap-adjusted GCov test statistic:

11See also Escanciano (2007), Assumption A.5 for a sufficient high-level condition for the validity of the
bootstrap, when the moment condition is linear in ut.

12They can also be used for pure noncausal processes, i.e. when ut is a nonlinear innovation in reversed
time. In this case, the innovations as well as their bootstrapped values have to be defined in reversed time.

13The rate
√
T in the second condition in M1’ can be modified for refined bootstrap.
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sup
z

|PT [ξ̂sT < z]− P [ξ̃T < z]| p→ 0,

where PT stands for conditional on data, and ξ̃T is the value of ξT adjusted for its first-order

bias.

Remark 6: In Section 4.1, we noted the difference between the implicit null hypothesis H0,A

and the i.i.d. null hypothesis H0,i.i.d.. As such, the test based on a set A of transformations

is not necessarily consistent with respect to the alternative H0,A −H0,i.i.d.. Due to possible

conditional heteroscedasticity, the asymptotic distribution of the GCov test statistic under

H0,A − H0,iid can be a mixture of chi-square distributions with the weights depending on

the unknown true distribution f0. Li and Zhang (2022) propose a random weight bootstrap

method for the estimation of these weights.

5.5 Bootstrap Analysis of the (Local) Power of Test

The bootstrap can also be used to obtain the approximations of the power and local power of

the bootstrap size adjusted overidentification test in the spirit of Davidson and MacKinnon

(2006) (see also Escanciano (2007), Section 2.3 for local power). For the power under either

fixed or local alternatives, the steps of this approach are as follows:

Step 1: Estimate the model g(ỹt, θ, γ) = ut, t = 1, .., T under the alternative to get θ̂1,T , γ̂1,T .

Step 2: Find the residuals under the alternative: û1,T,t = g(yt, θ̂1,T , γ̂1,T ).

Step 3: Get the bootstrapped residuals ûs1,b,T,t by drawing in the sample distribution of

û1,T,t, t = 1, ..., T for s = 1, ..., S.

Step 4: Calculate the bootstrapped pseudo-observations ys1,b,T,t from

g(ỹs1,b,T,t; θ̂1,T , γ̂1,T ) = ûs1,b,T,t, s = 1, ..., S.

⇐⇒ ys1,b,T,t = c(ỹs1,b,T,t−1, û
s
1,b,T,t, θ̂1,T , γ̂1,T ), s = 1, ..., S.

Step 5: Compute from the values ys1,b,T,t, t = 1, ..., T bootstrapped under the alternative,

the estimate θ̂s0,b,T of the estimator of θ under the null and the associated test statistic

ξ̂s0,b,T , s = 1, ..., S. Then, the empirical distribution of ξ̂s0,b,T − ξ̂0,T , s = 1, ..., S approximates

the distribution of ξ̂0,T under the alternative.
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6 Finite Sample Performance of NLSD, GCov Specifi-

cation and GCov Bootstrap Tests

This section examines the finite sample performance of the proposed test statistics in selected

causal-noncausal (vector) autoregressive processes. We perform simulations to study the

empirical size and power of a) the NLSD test statistic (2.5) for testing for the absence of

(non)linear serial dependence in time series [Section 2.2], b) the GCov specification test

statistic (3.3) [Section 3.2], and c) the GCov bootstrap test (4.1) [Section 4].

As the GCov bootstrap test statistic is computed from the residuals of parametric models,

Section 5.1 reviews the alternative (Approximate) Maximum Likelihood available for the

estimation of causal-noncausal models.

6.1 Parametric Estimation of Causal-Noncausal Models

When a causal-noncausal model is fully parametric, and the errors are assumed to follow a

parametric density, the Approximate Maximum Likelihood (ML) estimation can be applied to

the noncausal (mixed) processes. The Approximate Maximum Likelihood (AML) estimator of

univariate MAR(r,s) processes defined in equation (3.2) and introduced by Lanne, Saikkonen

(2011) is:

(Ψ̂, Φ̂, θ̂) = ArgmaxΨ,Φ,θ

T−s∑
t=r+1

ln f [Ψ(L−1)Φ(L)yt; γ],

where f [.; γ] denotes the non-Gaussian probability density function of ut, such as a t-student

density, for example. Davis and Song (2020) discuss the ML estimator for the multivariate

causal-noncausal VAR process given in Example 3, Section 3.1, with a parametric error

density.

6.2 Simulation Study

We consider the univariate MAR(r,s) processes with i.i.d. errors from non-Gaussian error

distributions. We generate univariate processes in samples of size T = 100, 200, 500. We

consider i.i.d. errors with a uniform distribution U [−1,1], a Laplace distribution with mean

zero and variance one, and a t-student (t(5)) distribution with 5 degrees of freedom with

mean zero and variance 5/3.
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6.2.1 Data Generating Process

In the univariate framework, we apply the simulation method proposed by Gourieroux and

Jasiak (2016) to generate the causal-noncausal processes. The MAR(r,s) model is given in

equation (3.7) where r is the order of causal polynomial and s is the order of noncausal poly-

nomial. For r = 0 and s = 1, we generate the MAR(0,1), i.e. the noncausal autoregressive

process of order 1:

yt = ψyt+1 + ut , |ψ| < 1. (6.1)

By setting r = 1 and s = 1, we generate MAR(1,1) process (3.8). It follows from Lanne,

Saikkonen (2011) that it has the following unobserved components v1,t, v2,t defined by:

v1,t ≡ (1− ϕL)yt ↔ (1− ψL−1)v1,t = ut, v2,t ≡ (1− ψL−1)yt ↔ (1− ϕL)v2,t = ut, (6.2)

which can be interpreted as the ”causal” and ”noncausal” components and used for simu-

lation and bootstrapping. Gourieroux, Jasiak (2016) show that i) v1,t is u-noncausal (i.e.

a function of present and future values of ut) and y-causal (i.e. a function of present and

past values of y) and ii) v2,t is u-causal (i.e. a function of present and past values of ut) and

y-noncausal (i.e. a function of present and future values of y). Process yt has the following

deterministic representations based on unobserved components that is used for simulation

and bootstrapping of yt:

i) yt =
1

1− ϕψ
(ϕv2,t−1 + v1,t), ii) yt =

1

1− ϕψ
(v2,t + ψv1,t+1), (6.3)

where in i) yt is a linear function of the first lag of v2,t and of the current value of v1,t, and

in ii) yt is a linear function of the current value of v2,t and of the first lag of v1,t. The values

of coefficients |ϕ| < 1 and |ψ| < 1 are chosen so that the strict stationarity conditions are

satisfied.

Figure 1 shows the examples of trajectories of the MAR(0,1) and MAR(1,1) processes

simulated with the three error distributions given above.

We observe that a large error value creates a spike in the trajectory of the MAR(1,1)

with an explosion rate of about 1/ψ and a collapse rate of ϕ. In pure processes, we observe

a jump if ψ = 0 and ϕ > 0, and an explosive bubble if ψ is small, positive, and ϕ = 0.

6.2.2 NLSD Test for Time Series

This section examines the size and power of the (non)linear serial dependence (NLSD) test

of yt computed from transformations a of a univariate time series yt. We consider two
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(a) MAR(0,1), ut ∼ U , ψ1 = 0.2 (b) MAR(1,1), ut ∼ U , ϕ = 0.2, ψ = 0.8

(c) MAR(0,1), ut ∼ L, ψ1 = 0.2 (d) MAR(1,1), ut ∼ L, ϕ = 0.2, ψ = 0.8

(e) MAR(0,1), ut ∼ t(5), ψ1 = 0.2 (f) MAR(1,1), ut ∼ t(5), ϕ = 0.2, ψ = 0.8

Figure 1: Plots of noncausal univariate processes, T = 200; L.:Laplace, U.:Uniform,
t(5): t-Student with d.f.=5
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Table 1: Test of the absence of (non)linear dependence against fixed MAR(0,1) alternative
at 5% significance level: size and power

γ
T=100 T=200 T=500

Uniform Laplace t(5) Uniform Laplace t(5) Uniform Laplace t(5)

0.0 0.0414 0.0484 0.0512 0.0450 0.0502 0.0518 0.0496 0.0540 0.0480

0.1 0.0878 0.0706 0.0684 0.1502 0.1360 0.1220 0.3760 0.3390 0.3572

0.2 0.2682 0.2202 0.2240 0.5618 0.5390 0.5322 0.9586 0.9546 0.9570

0.3 0.6014 0.5742 0.5674 0.9202 0.9266 0.9256 1 0.9998 1

0.4 0.8754 0.8814 0.8754 0.9966 0.9988 0.9976 1 1 1

0.5 0.9796 0.9822 0.9856 1 1 1 1 1 1

0.6 0.998 0.9986 0.9998 1 1 1 1 1 1

0.7 1 1 1 1 1 1 1 1 1

0.8 1 1 1 1 1 1 1 1 1

0.9 1 1 1 1 1 1 1 1 1

The first row (γ = 0) shows the empirical size of the test and the remaining rows show the
size-adjusted power with respect to fixed alternatives.

transformations of the time series: yt, y
2
t , i.e. K = 2, and lag H = 1 where the true error

distribution f0 is either Uniform, Laplace, or t(5). and the null hypothesis is the strong white

noise hypothesis:

H0 = (γ = 0) ≡ (yt = ut)

The alternative hypothesis is a MAR(0,1) model with coefficients that vary between 0.1 to

0.9:

H1 = {γ, f : (1− γL−1)yt = ut}.

For each value of γ and each f0, we simulate the series ys1, ..., y
s
T , s = 1, ..., S with S=5000

replications. The nominal size of the test is α = 0.05.

We first consider a fixed alternative, assuming a given density. The first row of Table, 1

with zero values of the autoregressive coefficients provides the empirical size. The remaining

rows illustrate the size-adjusted empirical power of the test with respect to fixed alternatives

of aMAR(0, 1) process with coefficients that vary between 0.1 and 0.9. The columns of Table

1 pertain to different sample sizes and the Uniform, Laplace, and t(5) error distributions.
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The results reported in Table 1 show the good empirical size and power of the test

with respect to fixed alternatives, given each density. We observe that higher values of

autoregressive coefficients increase the power of the test. When the sample size increases,

the power converges to 1 and the size converges to 0.05.

Furthermore, we investigate the power of the test under the local alternatives by gen-

erating MAR(0,1) models with coefficients equal to δ√
T
, where δ varies between 0 and 0.9.

The results are provided in Figure 2. Since we consider the local alternatives, we expect

asymptotically the powers to be close to the size for small δ, while for bigger δ, we deviate

further away.

(a) T = 100 (b) T = 200

(c) T = 500

Figure 2: Local asymptotic power of the test of the absence of (non)linear dependence.

We see that the test has good local power and the power functions in the neighborhood of

the null hypothesis increase fast nonlinearly in δ. The local asymptotic properties appear to

depend on the sample size and error distribution. When the sample size increases from 100
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to 500, we observe more improvement for the Uniform and t(5)-distributions compared to

the Laplace distribution, which has the least heavy tails among these three distributions.

6.2.3 GCov Specification Test for Semi-Parametric Models

This section examines the empirical size and power of the GCov specification test applied to

nonlinear transforms of the residuals of a model. We illustrate the bootstrap-adjusted GCov

test discussed in Section 5. Next, we examine through simulations the application of the

bootstrap test to semi-parametric models estimated by the AML. Under the null hypothesis

of ”correct specification”, i.e. strong white noise errors, the model is a MAR(0,1) with errors

ut = (1−ψL−1)yt. The models are estimated by the GCov estimator with the lag length H=3.

We consider K=2 number of transformations with the residuals ûT,t and squared residuals

û2T,t as the non-linear transformations, where ûT,t = (1−ψ̂TL−1)yt, for the MAR(0,1) process.

Empirical size

To study the size of the test, we compute the nonlinear autocovariances,i.e. the autocovari-

ance matrices of nonlinear transformations of the residuals of the estimated models, denoted

by Γa(h; ., f). The null hypotheses considered are:

H0,a = {ψ, f : Γ0,a(h;ψ, f) = 0, ∀h = 1, ..., H},

They are tested against the general alternatives

H1,a = {ψ, f : ∃h : such that Γ0,a(h;ψ, f) ̸= 0, }.

We first consider the GCov specification test of the MAR(0,1) model and generate the

noncausal MAR(0,1) processes with autoregressive coefficient values equal to 0.3 and 0.7. All

the results are based on S= 5000 replications. The nominal size is α = 0.05.

We illustrate the empirical size of the GCov specification test applied to the MAR(0,1)

model under the null hypothesis, with the Uniform, Laplace, and t(5) error distributions in

first two rows of Table 2 for ψ equal to 0.3 and 0.7. The columns pertain to the different

sample sizes and error distributions.

According to these results, the GCov specification test is conservative at T = 100 in all

cases. When the sample size increases, the empirical size of the GCov test approaches the

nominal size for all distributions.

Power of the test

Next, we investigate the performance of the GCov specification test in terms of its em-

pirical power.
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Table 2: Empirical size and power of GCov specification test for MAR(0,1) at 5% significance
level

S./P. ϕ ψ
T=100 T=200 T=500

Uniform Laplace t(5) Uniform Laplace t(5) Uniform Laplace t(5)

S.
0 0.3 0.0224 0.0454 0.0386 0.0348 0.0566 0.0534 0.0406 0.0544 0.0560

0 0.7 0.0200 0.0400 0.0338 0.0298 0.0528 0.0468 0.0408 0.0552 0.0528

P.
0.8 0.3 0.1016 0.1724 0.1788 0.3404 0.4468 0.4672 0.9092 0.9282 0.9300

0.8 0.7 0.9680 0.9882 0.9896 1 1 1 1 1 1

S.: empirical size, P.: empirical power

In the univariate time series, an interesting way to investigate the empirical power of the

GCov test is to consider the null hypothesis of MAR(0,1) and deviate from it by adding a

causal component and then increasing that causal coefficient. This transforms the MAR(0,1)

model under the null hypothesis into a MAR(1,1) model under the alternative.

Therefore, the alternative hypothesis is:

H1a = (1− ϕL)(1− ψL−1)yt = ut,

with θ = ψ, γ = ϕ.

The MAR(0,1) model is estimated by the GCov estimator with the lag length H=3 and

the number K=2 of transformations: ût and û2t . We use S=5000 replications and consider

the nominal size of 0.05.

In Table 2, we provide the results on the empirical power of the specification tests applied

to a noncausal MAR(0,1) model with coefficients ψ equal to either 0.3 or 0.7. In Rows 3

and 4 we consider the additional causal coefficient γ = ϕ of the MAR(1,1) under the fixed

alternative with ϕ = 0.8 for each given error density and sample size reported in the columns.

By comparing the results for ψ = 0.7 and ψ = 0.3 in Table 2, we can conclude that the

empirical power increases in ψ for all sample sizes and distributions. Additional results are

given in Table 6, Appendix C, which also shows the effect of the causal persistence coefficient

ϕ on the empirical power.

Figure 3 illustrates the local asymptotic power of the GCov specification test computed

from the sample of size T = 500 and size-adjusted. The three local power functions for

MAR(0,1) model with Uniform, Laplace and t(5) distributed errors are plotted against δ =

0, 0.1, . . . , 0.9, where ϕT = γT = δ√
T
. Panel (a) displays the results for the MAR(0,1) model

with ψ = 0.3 and panel (b) shows the results for ψ = 0.7. We observe that the test has
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(a) MAR(0,1) with ψ = 0.3 (b) MAR(0,1) with ψ = 0.7

Figure 3: Local asymptotic power of GCov specification test

good local power in each case. The best asymptotic power is displayed in both panels by the

Uniform distributed errors with the heaviest tails. The local power functions increase faster

in panel (b) for the model with higher noncausal persistence than in panel (a). Overall, the

rate of increase of local power functions is lower compared with the local asymptotic power

of the (non)linear dependence NLSD test displayed in Figure 2. Hence, larger sample sizes

are recommended for the specification test.

6.3 GCov Bootstrap Test

In this section, we illustrate by simulations the performance of the bootstrap GCov test.

Recall that the GCov bootstrap test can be applied to test the specification of a model esti-

mated by an estimator different from the GCov. To give an understanding of the performance

of the GCov bootstrap test, in Figure 4 we show how the distribution of the bootstrap test

statistic converges to the distribution of ξs when the sample size increases from 100 to 500.

Like in the previous Section, under the null hypothesis, the model is a MAR(0,1), and

under the fixed alternative, it is a MAR(1,1), allowing us to study the empirical power. We

consider the same series as in Table 2 to allow the comparison of the performance of the

asymptotic GCov test and the bootstrap test with an AML estimator. The model is not esti-

mated by the GCov, but instead by the Approximate Maximum Likelihood (AML) estimator

described in Section 4.1. We consider the AML estimators based on a t-student log-likelihood

function with an estimated degree of freedom fitted to the models with the Uniform, Laplace

and t(5) distributed errors. Hence, there is misspecification for the models with Uniform

and Laplace error distributions and the Quasi-AML (QAML) estimators are obtained. The
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Table 3: Empirical size and power of bootstrap-based specification test for MAR(0,1) at 5%
significance level

S./P. ϕ ψ
T=100 T=200 T=500

Uniform Laplace t(5) Uniform Laplace t(5) Uniform Laplace t(5)

S.
0 0.3 0.051 0.069 0.062 0.059 0.056 0.046 0.063 0.064 0.045

0 0.7 0.055 0.066 0.062 0.064 0.052 0.046 0.066 0.062 0.049

P.
0.8 0.3 0.216 0.395 0.412 0.497 0.652 0.665 0.981 0.975 0.986

0.8 0.7 0.976 0.987 0.992 1 1 1 1 1 1

S.: empirical size, P.: empirical power

GCov bootstrap test statistic is computed with H=3 and K=2. The experiment is replicated

1000 times. We employ simple bootstrap methods with 100 replications. Table 3 presents

the empirical size and power of the GCov bootstrap test. We find that the empirical size

of this test converges asymptotically to the nominal level, and it has high power against

fixed alternatives. We can argue that the bootstrap-based test has good empirical size and

power in small sample despite the misspecification of the models with Uniform and Laplace

distributed errors. By comparing the results of Tables 2 and 3, we observe that the bootstrap

test provides a close to nominal size in small samples.

(a) T = 100 (b) T = 500

Figure 4: Comparison of the distributions of ξs and ξ̂s for MAR(0,1) with t(5) error distri-
bution and ψ = 0.7
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7 Empirical Application

In this section, we apply the GCov specification test to a univariate causal-noncausal model

fitted to the series of aluminum prices in U.S. Dollars per metric ton. This approach is

motivated by the presence of spikes and bubbles in the aluminum prices, and the recent

literature on causal-noncausal modeling of commodity prices [Hecq, Lieb, and Telg (2016),

Fries, Zakoian (2019), Gourieroux, Jasiak (2022)]. First, we apply the (non)linear serial

dependence NLSD test to the data and next use the GCov specification test to examine the

goodness of fit of the causal-noncausal processes fitted to the data.

Our sample consists of T = 228 monthly average prices recorded between January 2005

and October 2024 and referred to as the Global price of Aluminum 14. We detrend the series

of prices by regressing it on time (polynomial of degree one). The detrended prices are plotted

in Figure 5a, where we observe multiple spikes and a sudden drop in aluminum prices during

the 2008 recession when the commodity prices fell due to weak demand. Moreover, in 2020,

we see a spike in the price of aluminum, which is due to the weak supply of commodities at

the beginning of the Covid period.

To ensure the identification of the causal and noncausal dynamics, we test the data for

normality by applying the Kolmogorov-Smirnov normality test. The test statistic of 0.50

exceeds the critical value of 0.08. Hence, the null hypothesis of the normality of aluminum

price distribution is rejected. Figure 6 (a) in Appendix C provides the sample density plot

of demeaned aluminum price and compares it to the Gaussian density. We confirm that the

aluminum prices are non-Gaussian.

We test for nonlinear serial dependence in the aluminum prices using the NLSD test intro-

duced in Section 2. We compute the test statistic from the series using H=9 and K=2. The

value of the NLDS test is 1675.4 and exceeds the critical value of 50.99, showing (non)linear

serial dependence in the data. This finding is confirmed by the ACF of the series and their

squares in Figures 7a and 7b in Appendix C.

Next, we use the semi-parametric approach without any distributional assumptions on the

errors and explore several specifications of the causal-noncausal MAR(r,s) models for varying

causal and noncausal orders r and s. In Table 4 we report the GCov estimated parameters

with H=9 and K=2, where we use the residuals and the logarithm of the absolute value of

residuals power two.

We apply the GCov specification test to each model, i.e. the test of the null hypothesis of

14International Monetary Fund, Global price of Aluminum [PALUMUSDM], retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/PALUMUSDM, December 20, 2024.
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strong white noise errors to assess its fit. These statistics and the associated critical values

are given in columns 2 and 3 of Table 4. Under the strict stationarity assumption, all models

have autoregressive polynomials with roots outside the unit circle. The estimated roots of

Φ̂(L) and Ψ̂(L−1) polynomials are given in the last column of Table 4. We find that for the

MAR(1,1) model, the GCov specification test does not reject the null hypothesis of strong

white noise residuals, indicating the absence of (non)linear serial dependence in the residuals.

Figure 5b shows the in-sample fitted values of the MAR(1,1) model. Figure 6 (b) in Appendix

C, illustrates the non-Gaussian distribution of the residuals. The ACF of these residuals and

their squares given in Figures 7c and 7d of Appendix C are not statistically significant, which

confirms the results of the GCov specification test. Furthermore, we plot the fitted causal

and noncausal components of MAR(1,1), i.e. v̂1,t = (1 − ψ̂L−1)yt and v̂2,t = (1 − ϕ̂L)yt in

Figure 8 of Appendix C. The components v1,t, v2,t are discussed in Section 6.2.1 and defined

in equation (6.2), with V1,t capturing the locally explosive patterns.

Table 4: Estimated parameters of selected causal-noncausal models, GCov specification test
with χ2 critical values at 5% significance level, and roots of Φ̂(L−1) and Ψ̂(L)

ϕ1 ψ1 ψ2 test statistic χ2
0.95 Lϕ1 Lψ1 Lψ2

MAR(0,1) 0.93∗ 57.53 49.80 1.07

MAR(1,1) 0.41∗ 0.87∗ 22.32 48.60 2.43 1.14

MAR(1,2) 0.62∗ 0.76∗ 0.02 22.60 47.4 1.60 1.27 -36.93

* indicates statistical significance at 5%

In addition, we estimate the MAR(1,1) model using the AML estimator with the log-

likelihood based on the fitted t-student error distribution with 3.9 degrees of freedom15 to

illustrate the GCov bootstrap test. Table 5 displays the estimated causal and noncausal

coefficients and GCov bootstrap test with the null hypothesis of i.i.d residuals.

Table 5: Estimated parameters of MAR(1,1) model by AML, GCov bootstrap test with
critical values at 5% significance level, and Ljung-Box test of residuals and residuals square

ϕ ψ bootstrap test CV LB(ϵ̂t) χ2
0.95(20) LB(ϵ̂2t ) χ2

0.95(20)

MAR(1,1) 0.91∗ 0.36∗ 97.14 70.41 14.68 31.41 68.85 31.41

* indicates statistical significance at 5%

15The degrees of freedom are an additional AML parameter estimated in this model.

44



(a) Detrended Aluminum price (b) MAR(1,1) fitted values

Figure 5: Detrended Aluminum price, MAR(1,1) fitted values

By comparing Tables 4 and 5, we find that the AML estimate of the causal coefficient of

the MAR(1,1) process is closer to the unit root. Based on the GCov bootstrap test results, we

reject the null hypothesis of i.i.d residuals in one step in the AML estimated model. However,

the Ljung-Box test does not reject the absence of dependence in the residuals at the level

of 5% and can only detect the existence of dependence in the squared residuals. The AML

results could suffer from misspecification of the parametric likelihood function, and we see

from the portmanteau test results in Tables 4 and 5, that the GCov estimated model has a

satisfactory fit while the model based on the AML does not. Moreover, the GCov bootstrap

test is advantageous, compared to the Ljung-Box test, since it rejects the null of i.i.d residuals

in one step.

8 Conclusion

This paper considers nonlinear serial dependence tests in non-Gaussian time series and spec-

ification testing in models with non-Gaussian i.i.d. errors. We examined analytically and

through simulations the finite sample properties of the semi-parametric Gcov specification

test under the local hypotheses to provide convincing empirical evidence of its potential as a

widely applicable diagnostic tool for testing the goodness of fit of semi-parametric dynamic

models with i.i.d. non-Gaussian errors.

We introduced a new tests of the null hypothesis of the absence of (non)linear dependence

in time series, called the NLSD test. We also introduced a new GCov bootstrap specification

test applicable to dynamic non-Gaussian models estimated by a method other than the GCov,
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such as the semi-parametric GMM or parametric ML-type estimators.

We explored the finite sample performance of these new tests in simulations and described

analytically the asymptotic distributions of the test statistics under the local alternatives.

The local alternatives were used to focus on specification errors due to the parameters rather

than the marginal error density, for example, in the semi-parametric model of interest. For

illustration, we applied the NLSD test to the aluminum prices. Next, we used the GCov

specification test to select the optimal fit of a causal-noncausal MAR model of aluminum

prices.
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Appendix A

The following notation is used:

n - dimensions of Yt

ut is of dimension J = dim(g)

K - dimension of transformations a

a(ut) = ga is of dimension K

Γ or (Γa) is of dimension K ×K (except for Section 2.1.2, where Γ is of dimension n)

dim(θ) - dimension of θ

dim(γ) = 1, γ is a scalar

Id is the Identity matrix of dimensions n and Km such that n = K.

Asymptotic Behavior of the Portmanteau Statistic Under the Independence

Hypothesis

This Appendix reviews the results, which already exist in the literature and are used in the

proofs of new results in Appendix B.

A.1 Asymptotic Behavior of Sample Autoregressive Coefficients

Suppose that process (Yt) is strictly stationary and follows a VAR(1) model:

Yt = α +BYt−1 + ut, (A.1)

where ut is a square integrable strong white noise, E(ut) = 0, V (ut) = Σ, wher Σ is invertible

and the coefficient matrix B has no eigenvalues of modulus 1. This VAR model is a SUR

model with identical regressors Xt = Yt−1 in all equations. In this case, the OLS estimators

applied equation by equation are equal to the GLS estimator of B 16. The estimator B̂′ =

Γ̂(0)−1Γ̂(1)′ is asymptotically normally distributed:

√
T [vec(B̂′)− vecB′] ≈ N [0,Σ⊗ Γ(0)−1].

Under the null hypothesis: H0 = (Γ(1) = 0) = (B = 0), we have Σ = Γ(0) and

√
Tvec(B′) ∼ N(0,Γ(0)⊗ [Γ(0)−1]).

where the ⊗ denotes the Kronecker product [see Chitturi (1974), eq. (1.13)].

A.2 Portmanteau Statistic as a Lagrange Multiplier test

16In this Appendix the index T of the estimators is omitted to simplify the notation.
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It can be shown that the Lagrange Multiplier test statistic for testing H0 = (Γ(1) = 0) =

(B = 0) is:

ξ̂T (1) = T Tr[Γ̂(1)′Γ̂(0)−1Γ̂(1)Γ̂(0)−1] = T TrR̂2(1). (A.2)

[See, e.g. Gourieroux, Jasiak (2023), Supplementary Material].

A.3 Asymptotic Behavior of Sample Autocovariance

The asymptotic distribution of
√
Tvec[Γ̂(1)′ − Γ(1)′] for model (A.1) is given in Gourieroux,

Jasiak (2023), Supplementary Material [see also Chitturi (1976), Hannan (1976)]. We have

√
T [Γ̂(1)′ − Γ(1)′] = Γ̂(0)

√
T [B̂′ −B′] = Γ(0)

√
T [B̂′ −B′] + op(1),

and

vec[
√
T [Γ̂(1)′ − Γ(1)′]] = vec[Γ(0)

√
T [B̂′ −B′]] = [Id⊗ Γ(0)]vec(

√
T [B̂′ −B′]) + op(1).

Under the null hypothesis H0 := (Γ(1) = 0) = (B = 0) of independently and identically

distributed (i.i.d.) process (Yt) with finite fourth order moment:

vec[
√
T [Γ̂(1)′ − Γ(1)′]] ∼ N [0, [Id⊗ Γ(0)][Γ(0)⊗ Γ(0)−1][Id⊗ Γ(0)]]

= N [0,Γ(0)⊗ Γ(0)].

It follows that under this null hypothesis, the statistic (A.2) follows asymptotically a chi-

square distribution χ2(K2), where K = n is the dimension of (Yt).

A.4 Statistic Based on Several Autocovariances

The interpretation as a SUR regression can be extended to any lag H. Then, under the

stationarity assumption, the VAR model becomes:

Yt = α +B1Yt−1 + · · ·+BHYt−H + ut, (A.3)

where (ut) is a square integrable strong white noise and the companion matrix of autregressive

coefficients has no eigenvalues of modulus 1. Under the null hypothesis of the independence

of Yt, or equivalently under H0 = {B1 = · · · = BH = 0}, the explanatory variables are

orthogonal, and the OLS estimators of B1, ..., BH are such that B̂h coincides with the OLS

estimator in the simple SUR model Yt = αh + BhYt−h + vt. It follows that, under this null
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hypothesis, the estimators
√
TB̂h, h = 1, ..., H are independent, normally distributed with

the same distribution N(0,Γ(0)⊗ Γ(0)). Then, the test statistics:

ξ̂T (H) ≈ T

H∑
h=1

vec[
√
T Γ̂(h)′]′[Γ̂0(0)

−1 ⊗ Γ̂0(0)
−1]vec[

√
T Γ̂(h)′] (A.4)

follows asymptotically the chi-square distribution χ2(K2H), where K = n is the dimension

of (Yt).

Appendix B

Asymptotic Distribution in the Semi-Parametric Framework

This Appendix provides the regularity conditions and proofs of Propositions 1, 2, B1 and

B2.

B.1 The Law of Large Numbers (LLN) for Triangular Arrays

As pointed out in Section 3.3.2, the proof of the consistency of estimated autocovariances

and of the GCov estimator under the local alternatives is similar to the proof under the

null hypothesis of independence. The only difference is in the use of the LLN for empirical

autocovariances of a triangular array of observations, uniform in θ.

Below, we provide a sufficient set of regularity conditions.

Regularity Conditions for LLN uniform in θ.

1. Conditions on the true nonlinear dynamics

i) The observations satisfy the model:

g∗(ỸT,t; θT , γT ) = ut, (B.1)

where the ut’s are i.i.d. with pdf f0.

ii) The function g∗ is invertible with respect to YT,t; then we can write:

YT,t = h(ut, YT,t−1, ..., YT,t−p; θT , γT ). (B.2)

iii) For each given T , (YT,t) with a varying t, is a strictly stationary and ergodic solution

of the autoregressive equation (B.2).

2. Conditions on the parameters

Suppose that the parameter space is Θ × C, where θ ∈ Θ ⊂ Rdim(θ) and γ ∈ C ⊂ R. We

assume that:
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i) Θ and C are compact sets with non-empty interiors.

ii) θ0 is in the interior of Θ and 0 is in the interior of C.

iii) θT = θ0 + µ/
√
T , γT = ν/

√
T .

In particular, for T sufficiently large, θT , γT are in the interior of Θ and C, respectively.

3. Regularity conditions on function g∗

i) The functions g∗k(y; θ, γ), k = 1, ..., K are continuously differentiable on the interior

Θ× C.

ii) Let us define: G∗
k(ỹ) = Max(θ,γ)∈Θ×C [g

∗
k(ỹ, θ, γ)]

2. We assume E0G
∗
k(Ỹ ) < ∞, k =

1, ..., K where E0 denotes the expectation computed for the process (Ỹt) associated with the

”asymptotic” parameter values (θ0, 0).

iii) Let us denote by B(ỹ) a uniform Lipschitz coefficient for functions g∗j (ỹ; θ, γ), j =

1, ..., J , g∗2j (ỹ; θ, γ), j = 1, ..., J and for g∗j (ỹ; θ, γ), g
∗
j (ỹ−h; θ, γ), j, k = 1, ..., J, h = 1, ..., H.

In this expression ỹ denotes the trajectory of the process and ỹ−h denotes this trajectory

lagged by h. It is assumed that supT
1
T
E|B(YT,t)] < ∞ [Gourieroux, Jasiak (2022)], where

the expectation is taken with respect to the distribution of process YT. = (YTt), with varying

t.

4. Condition of Near Epoch Dependence [De Jong (1988)]

The functions of the triangular array of random variables YT,t, t ≤ T, T ≥ 1 are L2−NED
(near epoch dependent), i.e. for ν(m) ≥ 0 and cTt ≥ 0 and for all m ≥ 0 and t ≥ 1

supθ∈ΘE[gj(ỸT,t, θ)− E(gj(ỸT,t, θ)|YT,t−m, ..., YT,t+m)]2 ≤ cT,tφ(m)

supθ∈ΘE[g
2
j (ỸT,t, θ)− E(g2j (ỸT,t, θ)|YT,t−m, ..., YT,t+m)]2 ≤ cT,tφ(m)

supθ∈ΘE[gj(ỸT,t, θ)gk(ỸT,t−h, θ)−E(gj(ỸT,t, θ)|YT,t−m, ..., YT,t+m)E(gk(ỸT,t−h, θ)|YT,t−m, ..., YT,t+m)]2

≤ cT,tφ(m)

for all j, k = 1, ..., K, h = 1, ..., H, φ(m) → 0 as m→ ∞ and lim supT→∞
1
T

∑T
t=1 cT,t <∞.

From Assumption 4) it follows that the functions g(YTt) are uniformly integrable mixin-

gales [DeJong (1998)]. Because the NED condition implies a mixingale condition, the weak

LLN of Theorem 2, Andrews (1988) can be applied. Then, Theorem 4 of Andrews (1992)

implies the uniform weak LLN (U-WLLN).

To summarize, we get the following Proposition:

Proposition B1:

Under the regularity conditions 1 to 4, we have:

plimT→∞Γ̂T (h; θ) = Γ0(h; θ)
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uniformly in θ ∈ Θ for h = 1, ..., H, where Γ0(h; θ) is evaluated at θ0, γ0 and f0 is the

true pdf of the error.

When the functions g are distinguished from their transforms ga, then conditions 1 and 2

concern g and conditions 3 and 4 concern ga.

B.2 Central Limit Theorem (CLT) for Triangular Array

We need to introduce additional regularity conditions to justify the expansion (3.13)

and the asymptotic normality of the sample autocovariances
√
T Γ̂(h; θT , γT , f0) computed

under a sequence of local alternatives. To obtain the corresponding CLT, we use the con-

ditional Lindeberg-Feller conditions for martingale difference triangular array [Dvoretski

(1970), Brown (1971)] extended to the multivariate case [Kundu et al. (2000), Th. 1.3].

To apply these conditions, we first need to define triangular filtration and the appropriate

martingales. We denote by FT,t the information generated by the array YT,τ , τ ≤ t. Then,

we consider the different transformations g∗j (ỸT,t; θ0, 0), g
∗
j (ỸT,t; θ0, 0)g

∗
k(ỸT,t−h; θ0, 0), j, k =

1, ..., K, h = 1, ..., H. They can be written as a vector G∗(ỸT,t; θ0, 0), say. Next, we transform

this vector into a multivariate martingale difference array by considering:

XT,t =
1√
T
{G(ỸT,t; θ0, 0)− E0[G(ỸT,t; θ0, 0)|FT,t−1]}.

The additional regularity conditions are the following:

Regularity Conditions for the CLT

i) The multivariate martingale difference array XT,t has finite second-order moments.

ii) For any vector b of the same dimension as XT,t, there exists a matrix Ω such that:

T∑
t=1

E[(b′XT,t)
2|FT,t−1]

P→ b′Ωb.

iii) Conditional Lindeberg-Feller condition:

T∑
t=1

E{(b′XT,t)
21|b′XT,t|>ϵ|FT,t−1}

P→ 0, for any b and ϵ > 0.

These regularity conditions ensure that the sum ST =
∑T

t=1XT,t tends in distribution to the

multivariate Gaussian distribution N(0,Ω). Then we get the asymptotic normality of the

estimated autocovariances under the sequence of local alternatives by applying the Slutsky

Theorem.

Proposition B2:

57



Under the sequence of local alternatives and the regularity conditions 1-5, the vectors

vec[
√
T Γ̂T (h; θT , γT , f0)] are asymptotically independent, normally distributed with mean

∆(h; θ0, f0, µ, ν) defined in (3.10) and variance-covariance matrix Γ0(0, θ0)⊗ Γ0(0, θ0)

Thus the behavior of the estimated autocovariances differs from its behavior under the

null by the presence of the asymptotic bias measured by ∆(h; θ0, f0, µ, ν).

We have introduced a set of regularity conditions to derive the asymptotic behavior of

the estimated autocovariances. Let us now explain why this set of conditions is also sufficient

to derive the asymptotic behavior of the GCov estimator and of the portmanteau statistic.

First, we review the standard expansions under the null hypothesis. Next, we derive their

analogues under the sequence of alternatives, before applying the CLT to the estimated

autocovariances of a triangular array.

B.3 First-order Expansion of the GCov Estimator under the Null Hypothesis

Below we recall the results under the null hypothesis derived in Gourieroux, Jasiak (2023).

Let us considerH = 1 for ease of exposition. The first-order conditions of the GCov estimator

are

∂TrR̂2(1; θj)

∂θj
= 0, j = 1, ..., J = dimθ,

Let us define:

A(θ0) = 2
∂vecΓ(1; θ0)

′

∂θ
[Γ(0; θ0)

−1 ⊗ Γ(0; θ0)
−1],

and

J(θ0) = −2
∂vecΓ(1; θ0)

′

∂θ
[Γ(0; θ0)

−1 ⊗ Γ(0; θ0)
−1]

∂vecΓ(1; θ0)

∂θ
.

The first-order Taylor series expansion of the GCov estimator is:

√
T (θ̂T − θ0) = J(θ0)

−1A(θ0)vec[
√
T Γ̂T (1; θ0)

′] + op(1), (B.3)

B.4 Expansion of the Portmanteau Statistic under the Null Hypothesis

The expansion of the test statistic under the null hypothesis is:

ξ̂T (H) =
H∑
h=1

vec[
√
T Γ̂T (h, θ0, f0)

′]′Π(h; θ0, f0)vec[
√
T Γ̂T (h, θ0, f0)

′] + op(1), (B.4)

[See Gourieroux, Jasiak, ”Generalized Covariance Estimator Supplemental Material” (2023),
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equation (a.11)], where

Π(h; θ0, f0) = [Γ0(0, θ0, f0)
−1 ⊗ Γ0(0, θ0, f0)

−1]− [Γ0(0, θ0, f0)
−1 ⊗ Γ0(0, θ0, f0)

−1]
∂vecΓ(h, θ0, f0)

∂θ′{
∂vecΓ(h, θ0, f0)

′

∂θ
[Γ0(0, θ0, f0)

−1 ⊗ Γ0(0, θ0, f0)
−1]

∂vecΓ(h, θ0, f0)

∂θ

}−1

×∂vecΓ(h, θ0, f0)
′

∂θ′
[Γ0(0, θ0, f0)

−1 ⊗ Γ0(0, θ0, f0)
−1]

Matrix Π(h; θ0, f0) satisfies for all h = 1, ..., H the condition

Π(h; θ0, f0)Vasy[
√
T Γ̂T (h, θ0)

′]Π(h; θ0, f0) = Π(h; θ0, f0)

where Vasy[
√
T Γ̂T (h, θ0, f0)

′] = [Γ0(0, θ0, f0)⊗ Γ0(0, θ0, f0)].

This condition means that the matrix Π(h; θ0, f0) has an interpretation in terms of an

orthogonal projector. Therefore, under the null hypothesis, the quadratic form (A.10) where

the vec(
√
T Γ̂T (h; θ0, f0)) are independent identically distributed still follows a chi-square

distribution with a reduced degree of freedom.

B.5 Asymptotic Behavior Under the Local Alternatives

Under the regularity conditions 1-6, it is easy to see that expansions similar to (B.3)-(B.4)

are still valid under the sequence of local alternatives by using the LLN for triangular arrays

and the convergence of order 1/
√
T of the estimated autocovariances that follows from the

CLT. For example, we still have the expansion:

ξ̂T (H) = T
H∑
h=1

{vec[
√
T Γ̂T (h; θT , γT , f0)]Π(h; θ0, f0)vec[

√
T Γ̂T (h; θT , γT , f0)]}+ op(1)

similar to expansion (B.4) where the vectors vec[
√
T Γ̂T (h; θT , γT , f0)], h = 1, ..., H are now

asymptotically independent with the distribution

N [δ(h; θ0, f0, µ, ν),Γ(0; θ0, f0)⊗ Γ(0; θ0, f0)].

by the CLT.

Then, under the sequence of local alternatives, the asymptotic distribution of ξ̂T (H) is a

chi-square distribution with the non-centrality parameter λ:

λ(θ0, f0, µ, ν) =
H∑
h=1

δ(h, θ0, f0, µ, ν)
′Π(h; θ0, f0)δ(h, θ0, f0, µ, ν)

and a degree of freedom equal to the rank of matrix Π(H; θ0, f0) = diag[Π(h; θ0, f0)], where

diag denotes a diagonal matrix.
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B.6 The Behavior of the Independence Test under Local Alternatives

The results of Section B.5 can be applied to a null hypothesis H0 = (yt = ut) without

parameter θ and other forms of local alternatives.

Let us consider the test of the absence of linear dependence in time series yt = ut, t =

1, ..., T against the local alternatives of an autoregressive form. More specifically, we test

H0 : {Γ0(h) = 0,∀h = 1, ..., H} = {B1 = · · · = BH = 0},

against the local alternatives. The local alternatives can be defined in terms of the autoregres-

sive parameters B1, ..., BH , or equivalently in terms of the autocovariances Γ(h), h = 1, ..., H.

Thus, the additional parameter γ is not necessarily a scalar. We follow the latter approach

with the sequence of local alternatives:

H1,T = {ΓT (h) = ∆(h)/
√
T , h = 1, ..., H} = {vecΓT (h) = δ(h)/

√
T , h = 1, ..., H},

with δ(h) = vec∆(h).

Under the sequence of local alternatives, the estimated autocovariances are asymptotically

independent with the asymptotic normal distributions.

vec[
√
T Γ̂T (h)

′]
a∼ N [δ(h),Γ(0)⊗ Γ(0)].

Hence:

[Γ(0)−1/2 ⊗ Γ(0)−1/2]vec[
√
T Γ̂T (h)

′]
a∼ N [(Γ(0)−1/2 ⊗ Γ(0)−1/2)δ(h), Id]

It follows that the portmanteau statistic ξ̂T (H) has asymptotically, under the sequence of

local alternatives, a chi-square χ2(K2H,λ) distribution with the non-centrality parameter λ,

where

λ =
H∑
h=1

δ(h)′[Γ(0)−1/2 ⊗ Γ(0)−1/2][Γ(0)−1/2 ⊗ Γ(0)−1/2]δ(h) =
H∑
h=1

δ(h)′[Γ(0)−1 ⊗ Γ(0)−1]δ(h),

(B.5)

is the non-centrality parameter.
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Appendix C

Table 6: Empirical power of GCov specification test for MAR(0,1) against the fixed alterna-
tive of MAR(1,1) at 5% significance level

ψ γ = ϕ
T=100 T=200 T=500

Uniform Laplace t(5) Uniform Laplace t(5) Uniform Laplace t(5)

0.3

0.1 0.0226 0.0528 0.0446 0.0394 0.0672 0.0616 0.0572 0.0758 0.0752

0.2 0.0276 0.0626 0.0568 0.0720 0.0956 0.0980 0.1986 0.1624 0.1880

0.3 0.0416 0.0850 0.0866 0.1364 0.1612 0.1748 0.5244 0.3898 0.4162

0.4 0.0568 0.1080 0.1242 0.1796 0.2286 0.2394 0.6136 0.5280 0.5590

0.5 0.0604 0.1238 0.1346 0.2174 0.2568 0.2696 0.8000 0.6812 0.7002

0.6 0.0642 0.1276 0.1332 0.2504 0.3070 0.3216 0.8286 0.7898 0.7938

0.7 0.0746 0.1460 0.1518 0.2796 0.3614 0.3796 0.8722 0.8644 0.8634

0.8 0.1016 0.1724 0.1788 0.3404 0.4468 0.4672 0.9092 0.9282 0.9300

0.9 0.2100 0.2478 0.2552 0.5486 0.6180 0.6174 0.9804 0.9846 0.9862

0.7

0.1 0.0182 0.0500 0.0378 0.0374 0.0702 0.0664 0.1174 0.1224 0.1140

0.2 0.0296 0.0718 0.0628 0.1012 0.1456 0.1454 0.5346 0.4464 0.4602

0.3 0.0656 0.1430 0.1526 0.2854 0.3712 0.3764 0.8908 0.8630 0.8654

0.4 0.1578 0.3120 0.3098 0.5718 0.7040 0.6852 0.9926 0.9950 0.9908

0.5 0.3392 0.5700 0.5490 0.8318 0.9316 0.9196 1 1 0.9996

0.6 0.6034 0.8144 0.7848 0.9690 0.9914 0.9898 1 1 1

0.7 0.8528 0.9424 0.9370 0.9990 0.9996 1 1 1 1

0.8 0.9680 0.9882 0.9896 1 1 1 1 1 1

0.9 0.9970 0.9980 0.9990 1 1 1 1 1 1

The following Tables 7 and 8 provide additional simulation results on the NLSD and

GCov specification tests, respectively. Table 7 provides the results on the empirical size

of the NLSD test for local alternatives and δ increasing from 0 to 0.9. Table 8 shows the

empirical size of the GCov specification test for fixed alternatives and different values of ψ.
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Table 7: Test of the absence of (non)linear dependence (MAR(0,0)) against local MAR(0,1)
alternatives at 5% significance level: size and size-adjusted power

γT =
T=100 T=200 T=500

δ√
T

Uniform Laplace t(5) Uniform Laplace t(5) Uniform Laplace t(5)

0√
T

0.0414 0.0484 0.0512 0.0450 0.0502 0.0518 0.0496 0.0540 0.0480

0.1√
T

0.0498 0.0494 0.0470 0.0496 0.0490 0.0504 0.0512 0.0494 0.0508

0.2√
T

0.0498 0.0488 0.0460 0.0502 0.0496 0.0496 0.0528 0.0492 0.0514

0.3√
T

0.0516 0.0474 0.0464 0.0506 0.0524 0.0486 0.0544 0.0504 0.0540

0.4√
T

0.0526 0.0486 0.0474 0.0530 0.0536 0.0500 0.0564 0.0520 0.0564

0.5√
T

0.0574 0.0502 0.0486 0.0556 0.0568 0.0524 0.0606 0.0550 0.0602

0.6√
T

0.0596 0.0530 0.0492 0.0606 0.0610 0.0548 0.0648 0.0584 0.0642

0.7√
T

0.0650 0.0552 0.0520 0.0664 0.0662 0.0606 0.0710 0.0620 0.0710

0.8√
T

0.0714 0.0580 0.0564 0.0756 0.0742 0.0652 0.0772 0.0664 0.0774

0.9√
T

0.0804 0.0640 0.0622 0.0838 0.0812 0.0714 0.0860 0.0758 0.0848

The first row (ψ = 0) shows the empirical size of test and the remaining rows show the power
with respect to local alternatives with γT = ψT = δ√

T
.

Table 8: Empirical size of GCov specification test for the null hypothesis of MAR(0,1) at 5%
significance level

ψ
T=100 T=200 T=500

Uniform Laplace t(5) Uniform Laplace t(5) Uniform Laplace t(5)

0.1 0.0212 0.0404 0.0378 0.0342 0.0538 0.0514 0.0408 0.0538 0.0544

0.2 0.0216 0.0414 0.0390 0.0344 0.0548 0.0534 0.0414 0.0558 0.0560

0.3 0.0224 0.0454 0.0386 0.0348 0.0566 0.0534 0.0406 0.0544 0.0560

0.4 0.0214 0.0460 0.0390 0.0344 0.0560 0.0522 0.0414 0.0548 0.0540

0.5 0.0194 0.0450 0.0382 0.0326 0.0550 0.0518 0.0414 0.0548 0.0540

0.6 0.0196 0.0428 0.0348 0.0318 0.0536 0.0492 0.0426 0.0560 0.0544

0.7 0.0200 0.0400 0.0338 0.0298 0.0528 0.0468 0.0408 0.0552 0.0528

0.8 0.0202 0.0392 0.0316 0.0296 0.0512 0.0454 0.0396 0.0532 0.0500

0.9 0.0178 0.0384 0.0310 0.0278 0.0508 0.0428 0.0350 0.0494 0.0498

62



(a) Demeaned-Detrended Aluminum price (b) MAR(1,1) residuals

Figure 6: Densities of demeaned Aluminum price and MAR(1,1) residuals, compared with
the Normal density
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(a) ACF of the series (b) ACF of the series square

(c) ACF of the residuals (d) ACF of the square of the residuals

Figure 7: ACF of Aluminum prices and squared prices (panels a and b) and MAR(1,1)
residuals and squared residuals (panels c and d)
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Figure 8: MAR(1,1) causal-noncausal components
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