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Abstract

This paper introduces new positional investment strategies that maximize
investors’ positional utility from holding assets with high expected future return
and liquidity ranks. The optimal allocation vectors provide new investment
strategies, such as the optimal positional momentum portfolio, the optimal
liquid portfolio and the optimal mixed portfolio that combines high return
and liquidity ranks. The future ranks are predicted from a bivariate panel
VAR model with time varying autoregressive parameters. We show that there
exists a simple linear relationship between the time varying autoregressive
parameters of the VAR model and the auto-and cross-correlations at lag one of
the return and volume change series of the SPDR. Therefore the autoregressive
VAR parameters can be easily updated at each time, which simplifies the
implementation of the proposed strategies. The new optimal allocation port-
folios are shown to perform well in practice, both in terms of returns and liquidity.
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1 Introduction

Using the utility function as an agent objective function is the foundation for the portfolio
selection under uncertainty. According to the literature, utility function measures the
investor’s relative preference for different levels of wealth. One of the advantages of the
utility-based strategy is that it eliminates the arbitrary cut-off point of top 5%, or top
10% of assets to be included in a portfolio. In the portfolio management literature, the
investor maximizes his/her expected utility function based on wealth or portfolio return [see
Brennan and Torous (1999), Das and Uppal (2004) and Gourieroux and Monfort (2005)]1,
while in this paper the investor is assumed to maximize a CARA (Constant Absolute
Risk Aversion) utility function of future position of the assets (ranks of assets). In this
respect, we follow the approach of Gagliardini, Gourieroux, Rubin (2019) who introduce a
positional utility, which is an increasing function of future asset return positions rather
than of future portfolio returns.

This paper introduces new positional investment strategies that maximize investors’
utility from holding assets with high expected future ranks in return and liquidity. This
approach allows us to determine the optimal allocations that select assets with respect
to their expected future returns and liquidity ranks, where the latter ones are measured
by changes in traded volumes. An optimal allocation vector is also derived for a mixed
portfolio of assets with the highest combined ranks of returns and liquidity. The new
allocation strategies are called the optimal positional momentum portfolio, the optimal
positional liquid portfolio and the optimal positional mixed portfolio, respectively. The
new optimal allocations that maximize the positional utility function arise as extensions of
a naive equally weighted portfolio that account for serial dependence in the returns and
volume change ranks as well as for their co-movements. We show that returns on the new
optimal portfolios are comparable both theoretically and empirically with the naive equally
weighted portfolio as well as with the traditional momentum strategies with look-back and
holding periods of various length.

The future ranks of returns and volume changes are predicted from a bivariate panel
Vector Autoregressive (VAR) model. In order to adapt the ranks to the VAR dynamics,
the bivariate series of return and volume change ranks are first transformed into Gaussian

1Von Neumann and Morgenstern (1994) show that, a rational investor selects the optimal feasible
investment by maximising the expected utility of wealth.
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ranks. We observe that the autoregressive parameters of the VAR model display variation
over time. To accommodate that variation, we consider a time varying parameter VAR
model and propose two methods that allow an investor to update the VAR parameters at
each investment time. The first method consists in re-estimating the model at each time by
rolling over a fixed window of observations. The second method exploits the relationship
between the autoregressive coefficients of the VAR model and the series of auto-and
cross-correlations at lag 1 of returns and volume changes of the SPDR (Standard Poor’s
Depositary Receipts). The SPDR is an Exchange Traded Fund (ETF), i.e. a regularly
updated portfolio mimicking the evolution of the S&P 500 returns2. More specifically, we
show that the future values of autoregressive VAR coefficients can be predicted from simple
linear functions of the current auto- and cross-correlations at lag 1 of SPDR’s return and
volume changes. These linear functions are easy to compute and simplify the investment
procedure as they eliminate the need for re-estimating the panel VAR model by rolling. In
the proposed approach, the time varying parameters are considered predetermined. We
show heuristically that the approach can be extended to a random coefficient framework,
where the autoregressive VAR coefficients are considered as fixed functions of random
factors, which are the auto and cross-correlation estimators with their known asymptotic
distributions.

In the financial literature the risk-return trade-off or the risk–reward shows the amount
of return gained on an investment correspond to the amount of undertaken risk. Modern
Portfolio Theory (MPT) assume that investors are risk averse and many literature show
that the more return sought, the more risk that must be undertaken [see Breen, Glosten,
and Jagannathan (1989), Nelson (1991), Glosten, Jakannatha and Runkle (1993), Brandt
and Kang (2004), etc.]. It means that, given two portfolios with the same expected
return, investors will prefer the less risky one and an investor will take more risk only
for higher expected returns. On the other hand, this trade-off is not the same for all
investors, different investors will evaluate the trade-off differently based on individual risk

2Beaulieu and Morgan (2000) studied the high-frequency relationships between the S&P 500 Index and
the SPDR by using minute-by-minute data for November 1997 through February 1998. They showed that
the SPDR did not track the index perfectly. Peng Xu (2014) checked the mimicking performance of the
SPDR in two ways: first he examined the relation between relative price change of the SPDR and the
relative change of the index and second studied the relation between holding period return of the SPDR
and the return on the index. He showed that in a linear static analysis the SPDR mimics the index pretty
well, since the historical correlation coefficient between the two return series is 0.98. He also showed that
both series will have similar dynamic features, as long as linear dynamics are considered
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aversion characteristics. Computing the level of an individual’s risk aversion is the most
difficult question since the answer is subjective.3 In many literature the risk aversion is
considered constant since it allows models to reach precise and relatively simple formulas for
relationships between variables4. In this paper, we consider the CARA utility function with
a constant risk aversion while the investor can adjust the portfolio to the current market
conditions by changing the risk aversion coefficient to invest more or less aggressively.

The paper is organized as follows. Section 2 introduces the panel VAR model and its pa-
rameter estimates based on the entire sample. It also provides the evidence of time variation
of the autoregressive coefficients and extends the model to a time varying parameter VAR
model. Section 3 documents empirically and establishes the linear relationship between the
auto- and cross-correlations of the return and volume change series of SPDR and the series
of autoregressive coefficients of the VAR model. Section 4 derives the optimal allocation
vectors from maximizing the positional CARA utility functions of expected ranks of return
and volume changes that lead to the optimal momentum, liquid and mixed portfolios.
Section 5 presents the empirical results. Section 6 concludes the paper. Additional results
are gathered in Appendices A, B, C and D.

2 The Cross-Sectional Gaussian Ranks Model

2.1 The Ranks

This chapter examines the dynamics of Gaussian ranks of return and trade volume changes
computed from 1330 stocks observed monthly over the period of April 1999 to October
2016. The ranks are defined in Chapter two, Section 3 as follows:

ui,t = Φ−1(F̂ rt (rit)) t = 1, · · ·, T ; i = 1, · · ·, n, (2.1)
3There are some tests help determine what is the most appropriate risk for investors. The PASS test by

W.G. Droms (1988), the Baillard, Biehl Kaiser (1986) test, classifies investors in order from "confident" to
"anxious" and "careful" to "impetuous", while Barnewal (1987) considered just two types of investors passive
and active investors.

4Chou (1988) showed that the risk attitude parameter stay stable for correlative periods of time, Safra
and Segal (1998) defined the invariant preference relation between outcomes of two distributions as the
constant risk aversion and Quiggin and Chambers (2004) show the constancy of the risk aversion since the
investor attitude is strongly linked with the family of generalized expected utility preferences.
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vi,t = Φ−1(F̂ tvt (tvit)) t = 1, · · ·, T ; i = 1, · · ·, n, (2.2)

where ui,t is the Gaussian rank of return (ri,t), vi,t is the Gaussian rank of trade volume
change (tvi,t), Φ is the cumulative distribution function (c.d.f) of the standard Normal,
Φ−1 is its inverse, i.e. the quantile function of the standard Normal and F̂ rt , F̂ tvt are the
cross-sectional empirical cumulative distribution functions of return and trade volume
changes at date t, respectively.

2.2 The Model

The positional portfolio strategy is about finding the optimal allocation based on the future
position of all equities in the portfolio. To predict the future positions, we define a joint
dynamic model of ranks of return and trade volume changes (uit, vit : i = 1, · · ·, n, t =
1, · · ·, T ). The joint dynamics of the two rank series can be represented by a Vector
Autoregressive model of order one (VAR(1)) as follow:

(
uit
vit

)
=
(
ρ11 ρ12
ρ21 ρ22

)(
ui,t−1
vi,t−1

)
+ Σ1/2

(
e1,it
e2,it

)
t = 2, · · ·, T ; i = 1, · · ·, n, (2.3)

where R =
(
ρ11 ρ12
ρ21 ρ22

)
is the matrix of autoregressive coefficients , Σ represents the

conditional variance matrix and the idiosyncratic disturbance terms (e1it, e2,it) are serially
independent and identically (i.i.d.) standard Normal distributed. The autoregressive matrix
R is assumed to have eigenvalues with modulus less than one to ensure the stationarity of
the process. The ranks are marginally standard Normally distributed with the marginal

variance of the ranks
(

1 η
η 1

)
. Let us introduce an additional assumption as follow:

Assumption 1, The marginal variance of ranks is an identity matrix.
The above assumption implies that η = 0 5. Moreover, it constraints the error variance
matrix Σ as follows:

5This assumption is not very stringent. In Chapter 2, we have empirically documented that η̂ is small
and tends to 0 at the end of the sampling period.
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(
1 0
0 1

)
= R

(
1 0
0 1

)
R′ + Σ. (2.4)

From equation (2.4) we can compute the matrix Σ as follows:

Σ =
(

1 0
0 1

)
−R

(
1 0
0 1

)
R′ = Id−RR′, (2.5)

where Id is a 2× 2 identity matrix. Matrix Σ depends on the autoregressive coefficients of
the VAR(1) model:

Σ =
(

1− ρ2
11 − ρ2

12 −ρ11ρ21 − ρ12ρ22
−ρ11ρ21 − ρ12ρ22 1− ρ2

21 − ρ2
22

)
=
(
σ2

1 σ12
σ12 σ2

2.

)
(2.6)

The VAR(1) model (2.3) can be rewritten as follows:

(
uit
vit

)
=
(
ρ11 ρ12
ρ21 ρ22

)(
ui,t−1
vi,t−1

)
+
(
ε1,it
ε2,it

)
, t = 2, · · ·, T ; i = 1, · · ·, n, (2.7)

where error vectors (ε1,it, ε2,it) are jointly normally distributed with mean 0 and variance
Σ. The marginal densities of the error terms are:

ε1,it ∼ N(0, σ2
1),

ε2,it ∼ N(0, σ2
2),

(2.8)

where σ2
1 = 1− ρ2

11 − ρ2
12, σ2

2 = 1− ρ2
21 − ρ2

22 and cov(ε1,it, ε2,it) = σ12 = −ρ11ρ21 − ρ12ρ22.
The parameters of model (2.7) are estimated by the maximum likelihood method with the
following objective function that is maximized with respect to the autoregressive parameters
(ρ11, ρ12, ρ21 and ρ22,):
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logL =
N∑
i=1

T∑
t=2

{
− log(2π)− 1

2 log(|Id−RR′|)− 1
2
[(uit

vit

)
−R

(
uit−1
vit−1

)]′
· (Id−RR′)−1

[(uit
vit

)
−R

(
uit−1
vit−1

)]} (2.9)

Table 1 shows the results of the maximum likelihood estimation from ranks of all 1330
stocks over the entire sampling period 1999-2016.

Table 1: Estimated VAR(1) Model for 1330 Stocks

Coefficients Values S-D Confidence Interval
ρ11 -0.024*** 0.002 (-0.029 , -0.020)
ρ12 0.012*** 0.002 (0.008 , 0.016)
ρ21 -0.010*** 0.002 (-0.014 , -0.004)
ρ22 -0.354*** 0.001 (-0.357 , -0.351)

***p < 0.01, **p < 0.05, *p < 0.1

The empirical results show that all coefficients of the model are statistically significant.
The estimated signs of the autoregressive coefficients suggest that:

1) low ranks of past returns and high ranks of past volume changes tend to increase
the current ranks of returns,

2) low ranks of past returns and low ranks of past volume changes tend to increase the
current ranks of volume changes.

An important characteristic of a VAR process is its stationarity. A stationary VAR
model has time-invariant mean, variance, and covariance structure. In practice, the
stationarity of an empirical VAR process can be analyzed by calculating the eigenvalues
of the autoregressive coefficient matrix (R̂). The computed eigenvalues of (R̂) are −0.358
and −0.025. Since both eigenvalues are of modulus less than one, we can conclude that
the VAR(1) model is stationary.

Given that the sampling period is long, one can be concerned about the stability of
the estimated parameters. Therefore, we re-estimate the equation (2.7) by rolling with
the window of 108 months (' 9 years). The rolling estimation yields the estimates of the
following VAR(1) with time varying coefficients:
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(
uit
vit

)
=
(
ρ11,t ρ12,t
ρ21,t ρ22,t

)(
ui,t−1
vi,t−1

)
+
(
ε1,it
ε2,it

)
, t = 2, · · ·, T ; i = 1, · · ·, n, (2.10)

where the error variances are time varying as well: σ2
1t = 1−ρ2

11,t−ρ2
12,t, σ2

2t = 1−ρ2
21,t−ρ2

22t

and cov(ε1,it, ε2,it) = σ12t = −ρ11,tρ21,t − ρ12,tρ22,t.
Figures 1 and 2 show the time series of autoregressive coefficients of model (2.10)

estimated by rolling over the period: March 2008 - September 2016. We observe that there
is some variation in ρ̂11,t, which is more pronounced than in ρ̂12,t. Coefficient ρ̂11,t varies
between −0.015 and −0.005 and coefficient ρ̂12,t varies between 0 and 0.01. Coefficient
ρ̂21,t takes lower values and fluctuates between −0.015 and −0.025. Coefficient ρ̂22,t varies
around −0.18.

Figure 1: Time Series of ρ̂11,t, ρ̂12,t

Figure 1 shows the time series of coefficients ρ̂11,t, ρ̂12,t, which are obtained by re-estimating model
(2.10) by rolling with the window of 108 months (' 9 years).
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Figure 2: Time Series of ρ̂21,t, ρ̂22,t

Figure 2 shows the time series of coefficients ρ̂21,t, ρ̂22,t, which are obtained by re-estimating the
model (equation (2.10)) by rolling with the window of 108 months (' 9 years).

Let R̂t, t = 1, ..., T denote the time series of matrices of time varying autoregressive
coefficients from model (2.10). The eigenvalues of matrices R̂t, t = 1, ..., T computed
over t = 1, ..., T are of modulus less than one, indicating that the time varying coefficient
VAR(1) model is stationary. We also compute the eigenvalues of the constrained matrices
Σ̂t = Id−RtR′t, t = 1, ..., T that are positive at all times t = 1, ..., T .

In practice, the rolling estimation of a panel VAR(1) model can be difficult. Therefore,
in next Section we explore an alternative approach, where the autoregressive coefficients
can be modelled as simple linear functions of time varying factors that are easy to compute.

3 Dynamic Autoregressive Coefficient Model

The stock prices behavior is reflected by the dynamics of stock market indexes such as
the S&P500 and by the prices of its mimicking portfolio, called the SPDR (Standard &
Poor’s Depository Receipts) quoted on NYSE with ticker SPY.
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3.1 Standard & Poor’s Depository Receipts (SPDR) as Market Factor

The Standard and Poor’s Depository Receipt (SPDR),6 is an exchange traded fund which
holds all of the S&P 500 Index stocks and is designed to reflect the price and yield
performance of the S&P 500 Index. The SPDR, first issued by the State Street Global
Advisors’ investment management group (SSGA) and is traded on the American Stock
Exchange (AMEX) since 1993. The SPDR index fund is designed to track the S&P 500
stock market index.

The aim behind this ETF is to provide an investment vehicle that at least roughly
produces returns in line with the S&P 500 Index. Unlike mutual funds, the SPDR’s trust
shares are not created for investors at the time of their investment. In fact, they have a
fixed number of shares that are bought and sold on the open market to align their holdings
with the S&P 500 index. The S&P 500 index itself is composed of U.S. big companies across
all Global Industry Classification Standard (GICS) sectors with a market capitalization of
$5 billion or greater. Some literature showed that the SPDR is not mimicking S&P 500
perfectly [see Beaulieu and Morgan (2000)]. while some studies show that the SPDR is
mimicking S&P 500 in a linear analysis. For instance, Peng Xu (2014) showed that in a
linear dynamics analysis the SPDR and S&P 500 has similar dynamic features while. Since
the SPDR is designed to reflect the price and yield performance of the SP 500 Index, it can
be considered as the pulse of the U.S. equity market or a common factor that encompasses
the effects of all news and events on the stock market.

The SPDR is consistently one of the high volume trading vehicles in the U.S. exchanges7.
Many investors and hedge funds use this fund because it represents the S&P 500 index and
by a single purchase, they will have exposure to a wide range of large U.S. companies. Not
only the volume but also its good price movement make the SPDR attractive to traders.

Figure 3 shows the relationship between the monthly returns on SPDR and S&P500
recorded over the period April 1999 to October 20168. We observe that these returns are
moving in parallel and are both fluctuating roughly between −0.1 to 0.1. There are periods
when the volatility of SPDR’s returns is higher than the volatility of the return on S&P

6Often referred to as the “spider”, and its symbol in the market is SPY
7Peng Xu (2014) showed that, the average daily trading volume from Jan, 2001 to Dec, 2005 is over 38

million shares and the average trading value per day is over 4 billion
8The returns of SPDR and S&P 500 are computed as log return and the dividends haven’t been

considered in the return.
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500. For instance, on February, 2000, September, 2001, August, 2002, October, 2008 or
September 2011 the returns of SPDR declined more than the returns on S&P 500. Also
at the beginning of years 2009 and 2012, July 2013 and at the end of 2014 the returns of
SPDR increased more than the returns on S&P 500.

The historical correlation between the returns on SPDR and on S&P500 is 0.66 and the
historical correlation between the squared returns of SPY and S&P 500 is 1.34.9, suggesting
that the SPDR mimics the index rather well as far as a linear static analysis is concerned.
Applying a simple linear regression10, also showed that, these two historical correlations
are both statistically significant. From what We observe in Figure 3 and also from the
linear regressions’ results, we can conclude that the returns on SPDR approximate the
S&P 500 returns very closely. Therefore, the returns on the SPDR can be considered as a
proxy for the market portfolio return.

Figure 3: SPDR and S&P500 Returns

Figure 3 shows the time series of S&P 500 and SPDR’s returns from April 1999 to October 2016.

9Which is corresponds to Peng Xu (2014) who showed the positive historical correlation coefficient
between the two return series.

10A simple linear regression model between SPDR and S&P 500 returns has been estimated as rSP DR =
a0 + a1rS&P 500 + e, and between the squared returns as r2

SP DR = a0 + a1r
2
S&P 500 + e. Where rSP DR, rSP

are the return of SPDR and S&P500 respectively, r2
SP DR, r

2
SP are the squared return of SPDR and S&P

500, a0, a1 are the constant and the coefficient respectively and e is the error term.

10



3.2 Relation Between The Returns and Trade Volume Changes of SPDR

Let us now consider the series of SPDR returns and trade volume changes recorded
monthly between April 1999 and October 2016. The trade volume is defined as the total
quantity of shares traded per month. The log return and the log volume changes are
calculated as follows:

rSt = ln( P
S
t

PSt−1
), t = 1, · · ·, T

tvSt = ln( TV
S
t

TV S
t−1

), t = 1, · · ·, T,
(3.11)

where PSt , PSt−1 are the prices of SPDR at times t and t − 1, TV S
t , TV

S
t−1 are the trade

volume changes of SPDR at times t and t− 1.
A simple way to determine whether there exists a relationship between the series of

SPDR returns and trade volume changes, is to examine the cross-correlation function.
Figure 4 shows the cross-correlation function of returns and trade volume changes of
SPDR. We observe that the cross-correlation at lag one is significant. Hence, past trade
volume changes can help predict the current returns. We also detect a significant negative
contemporaneous correlation between the returns and trade volume changes of SPDR.

Figure 4: SPDR: Cross-Correlation Function of rSt and tvSt

Figure 4 shows the cross-correlation function of returns and trade volume changes of SPDR. There
is significant correlation at lags 0 and one.

11



Figure 5 illustrates the contemporaneous correlation in a regression of SPDR trade
volume changes on the returns i.e. rSt on tvSt . The regression line has a negative slope
which is consistent with the negative contemporaneous correlation in Figure 4. Hence, a
high positive return on SPDR is associated with a high negative trade volume change at
time t.

Figure 5: Regression line of rt on tvt of SPDR

Figure 5 shows the regression line for returns and trade volume changes of SPDR at time t. The
regression line has a negative slope, which shows a negative contemporaneous correlation between
return and trade volume changes of SPDR.

Table 2, shows the result of the linear regression of SPDR’s trade volume over its
return. The correlation between trade volume and return is strongly statistically significant
and shows the negative relation between these two variables. It means that if the return
increase the contemporaneous trade volume would decrease.

3.3 Comparing Return and Liquidity Persistence: SPDR and Stock
Ranks

We have shown that the dynamics of returns on SPDR mimic the dynamics of market
returns and the SPDR returns are correlated with the SPDR’s trade volume changes.
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Table 2: Linear Regression of Correlation Between SPDR’s Trade Volume and Return

Coefficients Values S-D Confidence Interval
Intercept 0.023 0.030 (-0.037 , 0.083)

Correlation -4.335*** 0.613 (-5.562 ,-3.108)
***p < 0.01, **p < 0.05, *p < 0.1

Note: Table 2, shows the results of linear regression of SPDR’s trade volume changes over its return.

Moreover, the liquidity of SPDR is the liquidity of an asset with a return equal to the
market return.

Let us now explore whether the persistence and cross-correlation of returns and trade
volume changes of SPDR is similar to rank persistence in all stocks in our sample. That
persistence on average over the entire sampling period is approximated by the estimated
autoregressive coefficients of stock return and liquidity ranks ρ̂ij , i, j = 1, 2 of model (2.10)
reported in Table 1. The time varying stock persistence at each time t is approximated
by the series of time-varying autoregressive coefficients ρ̂11,t, ρ̂12,t, ρ̂21,t, ρ̂22,t estimated by
rolling and displayed in Figures 1 and 2. We proceed with a dynamic analysis and compare
these four series with the series of sample auto- and cross-correlations at lag one of rSt and
tvSt , both estimated by rolling with a window of 108 months (∼ 9 years).

Let the dynamic sample autocorrelations at lag 1 be denoted by AC(rS)t and AC(tvS)t
for returns and trade volume changes, respectively. The dynamic sample cross-correlations
at lag 1 between rSt and tvSt−1 are denoted by CC(rS , tvS)t. The sample cross-correlations
between tvSt and rSt−1 are denoted by CC(tvS , rS)t. The distributional properties of these
time series are examined and compared in Appendix A, which displays their histograms
and non-parametric normal density estimates.

Table 3 below shows the means, modes and standard deviations (S.D.) of the time
series of AC(rS)t, AC(tvS)t, CC(rS , tvS)t and CC(tvS , rS)t in comparison with the au-
toregressive coefficient series (ρ̂jk,t, i, j = 1, 2, t = 1, ..., T ). The mean of the sample
auto-correlations of SPDR returns and the mean and mode of ρ̂11t are negative. The
mean and mode of cross-correlations of rSt , tvSt−1 and ρ̂12t have the same sign and are
positive while they are bigger for the cross-correlations of rSt , tvSt−1. The mean and mode
of cross-correlations of tvSt , rt−1S are positive while the are negative for ρ̂21t. Both sample
auto-correlation at lag one of SPDR’s trade volume changes and ρ̂22t have negative mean
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and mode.
Table 4 shows the results of the t-test of equality of means of these time series. The

t-test of the equality of means of sample auto- and cross-correlation of SPDR and the
autoregressive coefficients of the VAR(1) model reject the null hypothesis except for the
auto-correlation at lag one of rSt and ρ̂11t.

Table 3: Summary Statistics for Cross- and Auto- Correlation of SPDR and Autoregressive
Coefficients ρ̂jk,t

Coefficients Mean Mode S.D.
AC(rS)t -0.0001 0.0501 0.0846
ρ̂11,t -0.0090 -0.0084 0.0000

CC(rS , tvS)t 0.0647 0.0037 0.1020
ρ̂12,t 0.0026 0.0013 0.0016

CC(tvS , rS)t 0.2494 0.2991 0.0691
ρ̂21,t -0.0179 -0.0138 0.005

AC(tvS)t -0.5089 -0.5176 0.0182
ρ̂22,t -0.1758 -0.1748 0.0016

Note: Table 3, shows Summary Statistics for Cross-Correlation (CC(rS , tvS)t,CC(tvS , rS)t) and
Auto-Correlation (AC(rS)t,AC(tvS)t) of SPDR and the Autoregressive Coefficients ρ̂jk,t

Table 4: T-Test of Equality of the Means

Null Hypothesis P-Value
Mean(AC(rS)t)=Mean(ρ̂11t) 0.155
Mean(CC(rS , tvS)t)=Mean(ρ̂12t) 0.000
Mean(CC(tvS , rS)t)=Mean(ρ̂21t) 0.000
Mean(AC(tvS)t)=Mean(ρ̂22t) 0.000

Note: Table 4, shows the t-test results of equality of the mean of Auto- and Cross- Correlation of
SPDR and the Autoregressive Coefficients ρ̂jk,t

Figures 6-9 below illustrate and compare the dynamics of the series of sample auto-and
cross-correlations of SPDR with the autoregressive coefficient dynamics. The right panels
show the estimated time varying autoregressive coefficients ρ̂jk,t, ( j, k = 1, 2, t = 1, ..., T )
plotted with the red line. The left panels show the sample auto- or cross-correlations of rSt
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and tvSt at lag one. In all panels, the green and blue lines are indicating the upper and the
lower bounds of confidence intervals, respectively.

Figure 6 compares the dynamics of AC(rS)t and the time series ρ̂11,t. We observe that
the auto-correlations of SPDR returns increase over time and have two major troughs in
October 2008 and October 2011. After year 2012, the auto-correlations remain steady and
positive. We observe similar dynamics, although at a different level in ρ̂11,t in the right
hand side of Figure 6. The series ρ̂11,t is always negative, and it is growing from December
2008 until August 2012. After August 2012, it starts to decrease. Before August 2012, it
has two major peaks on January 2009 and August 2012 and two major drops on March
2010 and October 2011. After August 2012 the series ρ̂11,t reaches its lowest value on July
2015.

Figure 6: Time Series of SPDR Auto-correlations AC(rS)t and Coefficients ρ̂11t

Figure 6 compares the sample auto-correlations at lag one of SPDR’s returns with the time series of autoregressive
coefficients ρ̂11t from model (2.10). The red line in the left plot shows the sample auto-correlations of (rS

t , r
S
t−1) and the

coefficients ρ̂11t in the right plot. In both plots the green and blue lines show the upper and lower bounds of confidence
intervals.

Figure 7 shows the dynamics of CC(rS , tvS)t compared to the time series ρ̂12t in the
right plot. Both the cross-correlations and ρ̂12t are decreasing over time. In the left plot,
the cross-correlations between rt and tvt−1 have two peaks on October 2011 and 2015. In
the right plot, we observe that the series ρ̂12t has three major peaks on February 2010,
June 2012 and July 2016. Figure 8 compares the dynamics of sample cross-correlations
CC(tvS , rS)t of SPRD with the time series of coefficients ρ̂21t. The cross-correlations
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decrease until February 2010 and increase afterwards.

Figure 7: Time Series of SPDR Cross-correlations CC(rS , tvS)t and Coefficients ρ̂12t

Figure 7 compares the sample cross-correlations of (rS
t , tv

S
t−1) of SPDR and the time series of coefficients ρ̂12t from

model (2.10). The red line in the left plot shows the sample cross-correlations of (rS
t , tv

S
t−1) and the coefficients ρ̂12t in

the right plot. In both plots the green and blue lines show the upper and lower bounds of confidence intervals.

Figure 8: Time Series of SPDR Cross-correlations CC(tvS , rS)t and Coefficients ρ̂21t

Figure 8 compares the sample cross-correlations of (tvS
t , r

S
t−1) of SPDR with coefficients ρ̂21t from model (2.10). The

red line in the left plot shows the sample cross-correlations of (tvS
t , r

S
t−1) and the coefficients ρ̂21t in the right plot. In

both plots the green and the blue lines show the upper and lower bounds of confidence intervals.
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They reach the minimum value on December 2008 while always remaining positive. The
series of coefficients, ρ̂21t always takes negative values. Coefficients ρ̂21t stay at a constant
level until December 2011, and decrease afterwards.

Figure 9, shows the sample auto-correlations AC(tvS)t and the time series of coefficients
ρ̂22t. The dynamics of these two series are different, but they both always take negative
values. The auto-correlations at lag one of trade volume changes of SPDR reach their first
peak on January 2009 and drop to their minimum value on September 2011. Next, that
series grows until November 2014 and then drops to its second minimum value on October
2015. In the right plot, we observe that series ρ̂22t increases until April 2012, and decreases
afterwards.

Figure 9: Time Series of Auto-correlations AC(tvS)t and Coefficients ρ̂22t

Figure 9 compares the sample auto-correlations at lag one of SPDR’s trade volume changes with the time series of
coefficients ρ̂22t from model (2.10). The red line in the left plot shows the sample auto-correlations of (tvS

t , tv
S
t−1) and

the coefficients ρ̂22t in the right plot. In both plots the green and the blue lines show the upper and lower bounds of
confidence intervals.

The empirical analysis of the dynamics and distributional properties of autoregressive
coefficients ρ̂jk,t and sample auto- and cross-correlations of SPDR returns and trade volume
changes leads to the modelling of autoregressive coefficients as functions of the sample
correlation functions of SPDR.
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3.4 Dynamic Factor Models of ρjk,t

The following regressions reveal the existence of statistically significant linear relationship
between the series of autoregressive coefficients ρjkt, (jk = 1, 2, t = 1, ..., T ) and the auto-
and cross-correlations of SPDR’s return and trade volume changes.

ρ̂11,t = a110 + a11AC(rS)t−1 + d1,t, (3.12)

ρ̂12,t = a120 + a12CC(rS , tvS)t−1 + d2,t, (3.13)

ρ̂21,t = a210 + a21CC(tvSrS)t−1 + d3,t, (3.14)

ρ̂22,t = a220 + a22AC(tvS)t−1 + d4,t, (3.15)

where ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t are the series of autoregressive coefficients of VAR(1) model
(2.10) displayed in Figures 1 and 2, and AC(rS)t−1 and AC(tvS)t−1 are the lagged values
of auto-correlations of SPDR return and trade volume changes, CC(rStvS)t−1 is the lagged
value of the cross-correlation between rSt and tvSt−1, CC(tvSrS)t−1 is the lagged value of
the cross-correlation between tvSt and rSt−1. Parameters a110, a120, a210 and a220 are the
intercepts, a11, a12, a21 and a22 are the regression coefficients and d1,t, d2,t, d3,t and d4,t

are the disturbance terms which are assumed to have mean zero, fixed variances and
are orthogonal to the regresses. Table 5 shows the results of estimating the above linear
regressions:

Table 5: Linear Regression Coefficients

Dependent Variable ajk0 ajk R2 RSE

ρ11 -0.009*** 0.012*** 0.35 0.001
ρ12 0.001*** 0.014*** 0.68 0.001
ρ21 -0.003* -0.058*** 0.58 0.003
ρ22 -0.192*** -0.031*** 0.12 0.002

***p < 0.01, **p < 0.05, *p < 0.1
Note: Table 5 shows the results of estimating linear equations (3.12)-(3.15). ajk0 show the intercepts,
ajk show the regression coefficients, R2 shows the multiple R-squared and RES shows the residual
standard error.
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All regression coefficients are statistically significant 11. This result implies that by using
the lagged values of auto- and cross-correlations of SPDR’s return and trade volume
changes, we can predict the parameters of the VAR(1) model as follows:

ˆ̂ρ11,t = â110 + â11AC(rS)t−1, (3.16)

ˆ̂ρ12,t = â120 + â12CC(rS , tvS)t−1, (3.17)

ˆ̂ρ21,t = â210 + â21CC(tvSrS)t−1, (3.18)

ˆ̂ρ22,t = â220 + â22AC(tvS)t−1. (3.19)

Next, the fitted values of ρ̂11, ρ̂12, ρ̂21 and ρ̂22 are computed from equations (3.16) to
(3-19). The following figures show the fitted series ˆ̂ρ11t, ˆ̂ρ12t, ˆ̂ρ21t and ˆ̂ρ22t and compare
them to the dependent variables ρ̂11t, ρ̂12t, ρ̂21t and ρ̂22t.

Figure 10: Time Series of ρ̂11t and Fitted Values ˆ̂ρ11t

Figure 10 compares the time series of estimated ρ̂11t and the fitted values of ˆ̂ρ11t. The red line
shows the estimated ρ̂11t from VAR(1) model (2.10), green and blue lines show it’s upper and lower
confidence intervals. The purple line shows the fitted values of ˆ̂ρ11t.

11The regression lines are provided in Appendix B.
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Figure 11: Time Series of ρ̂12t and Fitted Values ˆ̂ρ12t

Figure 11 compares the time series of estimated ρ̂12t and the fitted values ˆ̂ρ12t. The red line shows
the estimated ρ̂12t from VAR(1) model (2.10), green and blue lines show it’s upper and lower
confidence intervals. The purple line shows the fitted values of ˆ̂ρ12t.

Figure 12: Time Series of ρ̂21t and Fitted Values ˆ̂ρ21t

Figure 12 compares the time series of estimated ρ̂21t and the fitted values ˆ̂ρ21t. The red line shows
the estimated ρ̂21t from VAR(1) model (2.10), green and blue lines show it’s upper and lower
confidence intervals. The purple line shows the fitted values of ˆ̂ρ21t.
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Figure 13: Time Series of ρ̂22t and Fitted Values ˆ̂ρ22t

Figure 13 compares the time series of estimated ρ̂22t and the fitted values ˆ̂ρ22t. The red line shows
the estimated ρ̂22t from VAR(1) model (2.10), green and blue lines show it’s upper and lower
confidence intervals. The purple line shows the fitted values of ˆ̂ρ22t.

In all four plots, the fitted values of autoregressive coefficients show less fluctuation then
the estimates. However, their patterns are close to those of the the estimated autoregressive
parameters and they remain inside the confidence intervals of the estimated autoregressive
parameters. As we can see in all these Figures, at the end of the sample period there is
a gap between the fitted value and the time series of the coefficients. To reduce the gap
between the estimated (ρ̂jk) and fitted coefficients (ˆ̂ρjk) at the end of the sampling period,
for out-of-sample forecasts, the fit can be adjusted locally, by calibrating the regression
coefficients.

3.5 Rank Forecasts

The previous Section showed that the SPDR approximates the behavior of the market
portfolio as it returns are close to those of S&P500. Therefore, it can be considered as
an observable factor. It follows that the four explanatory variables in equations (3.16) to
(3.19) can be considered as fixed functions of factor returns and trade volume changes,

21



determining the autoregressive coefficients of the VAR(1) model and the persistence of
stock return and liquidity ranks.

This result provides an alternative approach to forecasting out of sample the future
ranks of stock returns and volume changes from the VAR(1) model (2-10). At time T + 1,
the future true rank is:

(
uiT+1
viT+1

)
=
(
ρ11,T+1 ρ12,T+1
ρ21,T+1 ρ22,T+1

)(
ui,T
vi,T

)
+
(
ε1,iT+1
ε2,iT+1

)
, i = 1, · · ·, n. (3.20)

It can be forecast using the last values of coefficients ρjkT , j, k = 1, 2 estimated by
rolling and displayed in Figures 1 and 2. This approach assumes implicitly that the
autoregressive coefficients remain constant between times T and T + 1. Then the estimated
ranks is as follows:

(
ûiT+1
v̂iT+1

)
=
(
ρ̂11,T ρ̂12,T
ρ̂21,T ρ̂22,T

)(
ui,T
vi,T

)
, i = 1, · · ·, n, (3.21)

Instead of re-estimating the VAR(1) by rolling equation 2.10, one can find the autore-
gressive coefficients by computing the fitted values ˆ̂ρjk,T+1 from equations (3.16) to (3.19)
and by using the fixed values of linear regression parameters given in Table 5 as follows:

(
ûiT+1
v̂iT+1

)
=
(

ˆ̂ρ11,T+1 ˆ̂ρ12,T+1
ˆ̂ρ21,T+1 ˆ̂ρ22,T+1

)(
ui,T
vi,T

)
, i = 1, · · ·, n, (3.22)

The relative performance of the two forecast methods is assessed empirically in Section
5. In the next Section, the predicted ranks of returns and trade volumes are used as the
approximations of the expected future ranks to build optimal portfolio allocations.

4 Optimal Positional Management

In this Section we determine the optimal portfolio allocations for an investor with a CARA
utility function.
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4.1 Optimal Positional Allocations

The empirical analysis presented in the previous Section concerned the empirical ranks
of returns and trade volume changes transformed to Gaussian variables. The portfolio
management, however is based on their theoretical counterparts. Therefore, we distinguish
and define the theoretical ex-ante ranks from the assumed theoretical c.d.f of each of these
two series, denoted by F rt and F tvt . Then, the ex-ante ranks are defined as follows:

u∗it = F rt (rit), (4.23)

v∗it = F tvt (tvit), (4.24)

The theoretical Gaussian ranks are given by uit = Φ−1(u∗it) = Qrt (rit) and vit =
Φ−1(v∗it) = Qtvt (tvit), where Qrt = Φ−1 ◦F rt and Qtvt = Φ−1 ◦F tvt . As the Gaussian ranks of
returns and volume changes are Normally cross-sectionally distributed, at each time t the
relationship between asset i returns and trade volume changes and their respective ranks
can be defined by the following stochastic transformations:

ri,t = σr,tuit + µr,t t = 1, · · ·, T , i = 1, · · ·, n, (4.25)

tvi,t = σtv,tvit + µtv,t t = 1, · · ·, T , i = 1, · · ·, n, (4.26)

where µr,t, µtv,t are the cross-sectional means of returns and trade volume changes and
σr,t, σtv,t, represent the cross-sectional standard deviations of the marginal Normal distri-
butions of return and trade volume changes at time t. This transformation, implies that
the cross-sectional marginal distributions of assets’ returns and trade volume changes at
date t are Gaussian as well (N(µr,t, σr,t) and N(µtv,t, σtv,t) respectively).

Let us consider two types of investors; investor 1 is looking for a portfolio that provides
the highest possible future return rank and investor 2 is looking for a portfolio with the
highest possible future liquidity rank.

The quantile functions are time varying and are given below for the return and trade
volume changes, respectively:
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Qrt (rit) = rit − µr,t
σr,t

(4.27)

Qtvt (tvit) = tvit − µtv,t
σtv,t

(4.28)

The investor maximizes a CARA utility function in either return or trade volume
changes subject to a constraint β′h = 1, where h is a unit vector of length n. This
implies that the sum of all portfolio allocations is equal to one, and the optimal portfolio
contains risky assets only. For investors 1 and 2, the future ranks of portfolio returns
and traded volumes are Qrt+1(β′rrt+1) and Qtvt+1(β′tvtvt+1), respectively. These investors
maximize the conditional expected utilities EtU [Qrt+1(β′rrt+1)] and EtU [Qtvt+1(β′tvtvt+1)],
where U (u) = −exp(−Aru) or U (v) = −exp(−Atvv) and Et denotes the expectation
conditional on the current and past returns, volumes and the predetermined current values
of the autoregressive coefficients. Therefore, the optimal positional momentum strategy
consists in selecting assets with the optimal relative allocation vector β̂r,t, where:

β∗r,t = arg max
βr:β′rh=1

Et
[
U (Qrt+1(β′rrt+1

]
= arg max

βr:β′rh=1
Et
[
U
(
Qrt+1

( n∑
i=1

βr,iQ
r
t+1
−1(uit+1)

))]
,

(4.29)

The optimal positional allocation vector based on the liquidity ranks is:

β∗tv,t = arg max
βtv :β′tvh=1

Et
[
U (Qtvt+1(β′tvtvt+1

]
= arg max

βtv :β′tvh=1
Et
[
U
(
Qtvt+1

( n∑
i=1

βtv,iQ
tv
t+1
−1(vit+1)

))] (4.30)

Let us consider the positional momentum and liquid portfolios which each contains relative
risky allocation vectors β′r and β′tv, respectively. The future return and trade volume
change of these portfolios are given by:

β′rrt+1 = σr,t+1β
′
rut+1 + µr,t+1β

′
rh (4.31)
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β′tvtvt+1 = σtv,t+1β
′
tvvt+1 + µtv,t+1β

′
tvh (4.32)

since β′rh = β′tvh = 1. By substituting the future positions of return and volume change
ranks into (4.27) and (4.28) respectively, the future positions of the portfolios become:

Qrt+1(β′rrt+1) = σr,t+1β
′
rut+1 + µr,t+1β

′
rh− µr,t+1

σr,t+1
= β′rut+1, ∀ βr, (4.33)

Qtvt+1(β′tvtvt+1) = σtv,t+1β
′
tvvt+1 + µtv,t+1β

′
tvh− µtv,t+1

σtv,t+1
= β′tvvt+1, ∀ βtv, (4.34)

Equations (4.33) and (4.34) show that, the position of the future return and trade volume
change of the momentum and liquid positional portfolios is a linear combination of the
future Gaussian ranks of return and trade volume changes of the individual risky asset
(ui,t+1, vi,t+1), with weights equal to the elements of the relative risky allocations βr and
βtv. The future positions of the return and trade volume of the portfolios are equal to the
shares of each asset in the portfolio multiplied by its future rank. Therefore, in order to
predict the future positions of returns and trade volumes of the portfolio, we can use their
future Gaussian ranks weighted by their respective shares in each portfolio. This result
is a consequence of the linearity of the transformed quantile function (Qt+1) under the
Normality assumption on the cross-sectional distributions [see equations (4.27)-(4.28)], and
holds for any dynamics of the ranks.

More specifically, by considering the dynamics of ranks introduced in the panel VAR
model (equation 2.10), the future positions of returns and trade volume changes can be
written as functions of their current ranks as follows:

Qrt+1(β′rrt+1) = β′rut+1

=
n∑
i=1

βr,iρ11,t+1ui,t +
n∑
i=1

βr,iρ12,t+1vi,t +
n∑
i=1

βr,iε1,it+1
(4.35)

Qtvt+1(β′tvtvt+1) = β′tvvt+1

=
n∑
i=1

βtv,iρ21,t+1ui,t +
n∑
i=1

βtv,iρ22,t+1vi,t +
n∑
i=1

βtv,iε2,it+1,
(4.36)
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where coefficients ρ11,t+1, ρ12,t+1, ρ21,t+1 and ρ22,t+1, in the autoregressive matrix Rt and
the conditional variance matrix Σt are assumed to be predetermined and are known to
the investor at time t 12. These equations show that the future positions of returns and
trade volume changes can be easily computed from the current ranks of returns and trade
volume changes.

In the optimizations (4.29) and (4.30), the risk aversion coefficients A depends on the
investor. We assume that the risk aversion of Investor 1 is Ar and that of investor 2 is
Atv. After substituting the quantile functions in the utility function and given that errors
ε1,it, ε2,it in equation (210), are independent Gaussian white noise processes, the expected
positional utilities to be maximized are as follows:

− E[exp(−ArQ
r
t+1(β′rrt+1)) | rt, tvt, Rt+1] =

−
[
exp

(
−Ar

n∑
i=1

βr,iρ11,t+1ui,t −Ar

n∑
i=1

βr,iρ12,t+1vi,t + 1
2A 2

r

n∑
i=1

β2
r,iσ

2
1,t+1

)]
(4.37)

where σ2
1t+1 = 1− ρ2

11,t+1 − ρ2
12,t+1, subject to β′rh = 1 and,

− E[exp(−AtvQ
tv
t+1(β′tvtvt+1)) | rt, tvt, Rt+1] =

−
[
exp

(
−Atv

n∑
i=1

βtv,iρ21,t+1ui,t −Atv

n∑
i=1

βtv,iρ22,t+1vi,t + 1
2A 2

tv

n∑
i=1

β2
tv,iσ

2
2,t+1

)]
(4.38)

where σ2
2t+1 = 1 − ρ2

21,t+1 − ρ2
22,t+1, subject to β′tvh = 1, for investor 2. In each of the

above equations ((4.37) and (4.38)), the expected positional utility is independent of the
cross-sectional mean and standard deviation of returns and trade volumes (µr,t, µtv,t and
σr,t, σtv,t) at time t and depends on the current position of asset i return and trade volume
change (uit and vit).

The Lagrangian functions for the maximization of the expected positional utility with
respect to the portfolio allocation vectors β′r and β′tv, subject to the constraints β′rh = 1

12See Appendix C for a heuristic demonstration of case of stochastic autoregressive coefficients.
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and β′tvh = 1 are:

Lr = −
[
exp

(
−Ar

n∑
i=1

βr,iρ11,t+1ui,t −Ar

n∑
i=1

βr,iρ12,t+1vi,t+

1
2A 2

r

n∑
i=1

β2
r,iσ

2
1,t+1

)]
+ λr(1− β′rh)

(4.39)

Ltv = −
[
exp

(
−Atv

n∑
i=1

βtv,iρ21,t+1ui,t −Atv

n∑
i=1

βtv,iρ22,t+1vi,t+

1
2A 2

tv

n∑
i=1

β2
tv,iσ

2
2,t+1

)]
+ λtv(1− β′tvh)

(4.40)

where λr and λtv are the Lagrange multipliers. The first-order condition for βr,t, βtv,t are:

−Ar

[
(ρ11,t+1ut + ρ12,t+1vt −Arσ

2
1,t+1βr,t)

exp
[
−Ar(ρ11,t+1β

′
r,tut − ρ12,t+1βr,tvt) + 1

2A 2
r β
′
r,tβr,tσ

2
1,t+1

)]
− λr,th = 0 (4.41)

−Atv

[
(ρ21,t+1ut + ρ22,t+1vt −Atvσ

2
2,t+1βtv)

exp
[
−Atv(ρ21,t+1β

′
tv,tut − ρ22,t+1βtv,tvt) + 1

2A 2
tvβ
′
tv,tβtv,tσ

2
2,t+1

)]
− λtv,th = 0 (4.42)

By solving the above equations with respect to βr,t, λr,t and βtv,t, λtv,t the optimal portfolio
shares at time t are as follows:

β∗r,t = 1
Ar

ρ11,t+1ut + ρ12,t+1vt
σ2

1,t+1
− 1

A 2
r

λr,th

σ2
1,t+1

(4.43)

β∗tv,t = 1
Atv

ρ21,t+1ut + ρ22,t+1vt
σ2

2,t+1
− 1

A 2
tv

λtv,th

σ2
2,t+1

(4.44)

In terms of vector we get:

β∗r,t
′h = (ρ11t+1u.t + ρ12t+1v.t)

Arσ2
1,t+1

− n λr,t
A 2
r σ

2
1,t+1

= 1, (4.45)
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β∗tv,t
′h = (ρ21t+1u.t + ρ22t+1v.t)

Atvσ2
2,t+1

− n λtv,t
A 2
tvσ

2
2,t+1

= 1, (4.46)

where u.t and v.t are the vectors of ranks of asset i = 1, . . . , n at time t. Then we have:

λr,t
A 2
r σ

2
1,t+1

= ρ11t+1ut + ρ12t+1vt
Arσ2

1,t+1
− 1
n
, (4.47)

λtv,t
A 2
tvσ

2
2,t+1

= ρ21t+1ut + ρ22t+1vt
Atvσ2

2,t+1
− 1
n
, (4.48)

where ut = 1
n

n∑
i=1

uit and vt = 1
n

n∑
i=1

vit. By substituting the above expressions into (4.42)

and (4.43) we get the vectors of optimal allocations as follow:

β∗r,t = 1
n
h+ ρ11t+1(ut − uth) + ρ12t+1(vt − vth)

Arσ2
1,t+1

(4.49)

β∗tv,t = 1
n
h+ ρ21t+1(ut − uth) + ρ22t+1(vt − vth)

Atvσ2
2,t+1

(4.50)

The optimal relative positional allocations β′∗r,t, β′∗tv,t (equations (4.49) and (4.50)) are
linear combinations of two well-known portfolios. The first one is the equally weighted
portfolio with weight 1/n for each asset and the second portfolio is an arbitrage portfolio (i.e.
zero-cost portfolio) with dynamic allocations proportional to the deviations of the current
ranks from their cross-sectional averages. Since these arbitrage portfolios contain the vector
of expected future ranks in deviation from their cross-sectional averages

(
(ρ11,t+1(uit −

ut) +ρ12,t+1(vit−vt) in equation (4.49) and (ρ21,t+1(uit−ut) +ρ22,t+1(vit−vt)) in equation
(4.50)

)
, it can be interpreted as a momentum portfolio in equation (4.49) and liquid

portfolio in equation (4.50). When the sign of the sum of persistence coefficients ρjk,t+ρjj,t

(where j,k=1,2) is positive, the arbitrage portfolio will be long in assets with large expected
deviation of their future ranks from their cross-sectional average, and when the sum of
persistence coefficients is negative then, it will be short in assets with small expected
deviation of their future ranks from their cross-sectional average.

This interpretation of the arbitrage part of the positional portfolio implies that the
optimal positional allocation deviates from the equally weighted portfolio by over-weighting
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the assets with larger current ranks, when the sum of persistence coefficients is positive and
deviates from the equally weighted portfolio by over-weighting the assets with small current
ranks, when the sum of persistence coefficients is negative. The weight of the arbitrage
portfolio in the optimal risky allocations β∗r,it and β∗tv,it are positively correlated with the
persistence of ranks coefficients (ρ11,t+1, ρ12,t+1 in equation (4.49) and ρ21,t+1, ρ22,t+1 in
equation (4.50)) and negatively correlated with the risk aversion coefficients (Ar in equation
(4.49) and Atv in equation (4.50)) of the investors.

The optimal allocation vectors β∗r,t, β∗tv,t that determine the positional portfolio strategies
depend on the choice of the positional utility function and on the positional universe of
stocks which is used to compute the ranks. Moreover, these optimal allocations of the
positional investor are defined by considering functions Qt+1 as the exogenous functions,
which in this paper, are the quantile functions.

4.2 Optimal Mixed Positional Allocations

Let us consider investment strategy that select assets with the highest return and liquidity
ranks. The optimal allocation vector β∗ is obtained by maximizing the positional CARA
utility function as follows:

− E[exp(−(ArQ
r
t+1(β′rrt+1) + AtvQ

tv
t+1(β′tvtvt+1))) | rt, tvt, Rt+1]

= −E
[
exp

(
− (Arβ

′ut+1 + Atvβ
′vt+1) | rt, tvt, Rt+1

)]
(4.51)

subject to β′h = 1. By analogy to the previous section, we predict the future ranks ut+1

and vt+1 from the bivariate VAR(1) model (equation 2.10) with time varying coefficients,
which are considered predetermined at time t. Next we maximize:

−
[
exp

(
−Ar

n∑
i=1

βi(ρ11,t+1uit + ρ12,t+1vit)−Atv

n∑
i=1

βi(ρ21,t+1uit + ρ22,t+1vit)+

1
2

n∑
i=1

β2
i (A 2

r σ
2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ

2
12,t+1)

)]
(4.52)
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where σ12,t+1 = −ρ11,t+1ρ21,t+1 − ρ12,t+1ρ22,t+1. To simplify the exposition, let us use the
vector notation:

−
[
exp

(
−Ar(ρ11,t+1β

′ut + ρ12,t+1β
′vt)−Atv(ρ21,t+1β

′ut + ρ22,t+1β
′vt)+

1
2β
′β(A 2

r σ
2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1)

)] (4.53)

subject to β′h = 1. The Lagrangian of the constrained maximization is:

LM = −
[
exp

(
−Ar(ρ11,t+1β

′ut + ρ12,t+1β
′vt)−Atvβ

′(ρ21,t+1ut + ρ22,t+1vt)

+ 1
2ββ

′(A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ

2
12,t+1)

)]
+ λ(1− β′h) (4.54)

where λ is the Lagrange multiplier. The first-order condition for βt, λt is:

[Ar(ρ11,t+1ut + ρ12,t+1vt) + Atv(ρ21,t+1ut + ρ22,t+1vt)− (A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1+

2ArAtvσ12,t+1)βt]exp
(
−Ar(ρ11,t+1β

′ut + ρ12,t+1β
′vt)−Atv(ρ21,t+1β

′ut+

ρ22,t+1β
′vt) + 1

2β
′
tβt(A 2

r σ
2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ

2
12,t+1)

)
− λth = 0 (4.55)

which yields:

β∗t = Ar(ρ11,t+1ut + ρ12,t+1vt) + Atv(ρ21,t+1ut + ρ22,t+1vt)
A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

−

λth

A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

(4.56)

Letmt denotes the nominator of the first term: mt = Ar(ρ11,t+1ut+ρ12,t+1vt)+Atv(ρ21,t+1ut+
ρ22,t+1vt), and ∆t denotes the common denominator: ∆t = A 2

r σ
2
1,t+1 + A 2

tvσ
2
2,t+1 +

2ArAtvσ12,t+1. We can rewrite equation (4.55) as follows:

β∗t = mt

∆t
− λth

∆t
. (4.57)
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By taking into account the constraint β∗t ′h = 1, we get equation (4.57) in terms of vector
as below:

β∗t
′h = m.t

∆t
− λth

′h

∆t
= 1

= m.t

∆t
− λn

∆t
= 1,

(4.58)

By solving for λt
∆t

we get:
λ

∆t
= 1
n

m.t

∆t
− 1
n

(4.59)

By substituting equation (4.59) into the expression of β∗ (equation (4.57)), we get the
optimal allocation vector as follows:

β∗ = mt

∆t
−

1
nmt

∆t
+ 1
n

β∗ = 1
n
h+ 1

∆t
(mt −mth)

(4.60)

which is the optimal allocation vector:

β∗t = 1
n
h+

Ar
(
ρ11,t+1(ut − ut) + ρ12,t+1(vt − vt)

)
A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

+
Atv

(
ρ21,t+1(ut − ut) + ρ22,t+1(vt − vt)

)
A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1

(4.61)
It is easy to see that the above formula simplifies when σ12,t = 0:

β∗t = 1
n

+ Ar(mr,t −mr,th) + Atv(mtv,t −mtv,th)
A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1

, (4.62)

where (mr,t−mr,th) = ρ11,t+1(ut−uth)+ρ12,t+1(vt−vth) and (mtv,t−mtv,th) = ρ21,t+1(ut−

31



uth) + ρ22,t+1(vt − vth). We see that:

β∗t = 1
n
h+

A 2
r σ

2
1t+1

(mr,t−mr,th)
Arσ2

1t+1
+ A 2

tvσ
2
2t+1

(mtv,t−mtv,th)
Atvσ2

2t+1

A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1

= 1
n
h+ πr,t

[(mr,t −mr,th)
Arσ2

1t+1

]
+ πtv,t

[(mtv,t −mtv,th)
Atvσ2

2t+1

]
,

(4.63)

where πr,t = A 2
r σ

2
1t+1

A 2
r σ

2
1,t+1+A 2

tvσ
2
2,t+1

and πtv,t = A 2
tvσ

2
2t+1

A 2
r σ

2
1,t+1+A 2

tvσ
2
2,t+1

. It follows from equation
(4.62), that when σ12,t+1 = 0, the optimal mixed positional allocation contains two
portfolios. The first one is the equally weighted portfolio with weights 1/n and the second
one is a weighted average of the positional momentum and positional liquidity allocations.

4.3 Optimal Positional Portfolios

From the optimal positional allocation vectors we define the following three types of optimal
positional portfolios:

Definition 1: The efficient positional momentum portfolio is based on the optimal
positional allocation β∗r,t which maximizes the CARA positional utility function under
condition β′rh = 1 for positional risk aversion parameters Ar and a bivariate VAR model
component of returns ranks dynamics.

As the liquidity ensures uninterrupted availability of funds, we extend this approach further
and introduce a new positional liquid portfolio which is efficient in terms of liquidity as
follows;

Definition 2: The efficient positional liquid portfolio is based on the optimal positional
allocations β∗tv,t which maximizes the CARA positional utility function under constraint
β′tvh = 1 for positional risk aversion parameters Atv and a bivariate VAR model component
of trade volumes’ ranks dynamics.

Some investors are interested in maximizing the returns while also looking for quick access
to funds as well. The third approach introduced as a new mixed positional portfolio, which
is efficient in terms of both return and liquidity.
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Definition 3: The efficient positional mixed portfolio is based on the optimal positional
allocations β∗t which maximizes the CARA positional utility function under constraint
β′h = 1 for risk aversion parameters Ar,Atv and a bivariate VAR model of return and
trade volumes’ ranks dynamics.

5 Optimal Positional Strategies

In this Section, we implement the optimal positional strategies defined in Section 4. The
positional strategies are applied to an investment universe corresponding to the n = 1330
stocks traded in NASDAQ market from 1999 to 2016. The positional risk aversion
parameters are considered constant and take values 0.5, 1, 3, 5. The expected ranks of
returns are predicted from the bivariate VAR(1) model (equation 2.7) of ranks of returns
and trade volume changes using either the autoregressive parameters ρ̂jk,t , jk = 1, 2
estimated by rolling (equation), or ˆ̂ρjk,t+1 , jk = 1, 2 predicted from the factor model
(equations 3.16-3.19). This strategy provides optimal portfolios with monthly adjustments
of asset allocations and equal look-back periods of one month over the period 2008 to
2016. The returns on the positional portfolios are compared with the returns on the equal
weighted portfolio (EW) that are obtained from rolling with a window of 108 months.

5.1 Optimal Positional Momentum Portfolios

The optimal positional momentum portfolios contain stocks with allocations βrt , defined as
follows:

β∗r,t = 1
n
h+ ρ11,t+1(ut − ut) + ρ12,t+1(vt − vt)

Arσ2
1,t+1

(5.64)

Table 6, shows the average of the time series of optimal positional portfolios’ returns and
their standard deviations and compares those returns with the equally weighted portfolio’s
return. Two types of positional momentum portfolios are considered: the first type has
the future ranks predicted with estimated ρ̂11,t, ρ̂12,t from the VAR(1) model (equation
2.7), and the second type is computed by using the fitted values of estimated coefficients
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from equations (3.16) and (3.17) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1. The positional momentum portfolios are
calculated for four different values of risk aversions (Ar = 0.5, 1, 3, 5). We observe that all
portfolios provide positive returns, which are higher than the returns on the EW portfolio.
When the risk aversion value increases, the return of the optimal positional momentum
portfolios decreases which is consistent with the risk-return trade-off in financial literature
13. Equivalently lower risk aversion tends to increase returns due to higher undertaken risk.

For all values of risk aversion considered, the positional momentum portfolios based
on estimated ρ̂11,t, ρ̂12,t provide higher returns than the portfolios based on the fitted
values of ˆ̂ρ11,t+1, ˆ̂ρ12,t+1. When the risk aversion values increase, the difference between
the returns on the two types of portfolios diminishes to zero for Ar = 5.

Table 6: Summary of Positional Momentum Portfolios’ Returns

Estimated ρ’s Fitted ρ’s

Risk Aversion Mean S-D Mean S-D
Ar = 0.5 2.198 1.176 2.192 1.089
Ar = 1 1.101 0.581 1.098 0.534
Ar = 3 0.370 0.191 0.369 0.171
Ar = 5 0.223 0.120 0.223 0.105

Mean S-D

EW 0.004 0.067

Note: Table 6 shows the average of the time series return of the optimal positional momentum
portfolios with the future ranks predicted with estimated ρ̂11,t, ρ̂12,t from VAR(1) model (equation
2.7) (Estimated ρ’s) and the with fitted value of estimated coefficients from equations (3.16) and
(3.17) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1 (Fitted ρ’s).

Figure 14 shows the time series of returns on the positional momentum portfolios
for different values of risk aversion. Both positional momentum portfolios (based on
estimated ρ’s and fitted ρ′s) with risk aversion equal to 0.5 outperform the other portfolios.
Among these two types of portfolios the positional momentum portfolio based on fitted ρ’s
performs better until January 2009 and between July 2010 and March 2014. The positional
momentum portfolio based on estimated ρ’s provides the highest returns between January

13Many literature show that the more return sought, the more risk that must be undertaken (Breen,
Glosten,and Jagannathan (1989), Nelson (1991), Glosten, Jakannatha and Runkle (1993), Brandtand Kang
(2004), etc).

34



2009 and June 2010 and after July 2014. The EW portfolio provides the lowest returns.

Figure 14: Time Series of Positional Momentum Strategies’ Returns

Figure 14 compares the time series of returns of positional momentum portfolios. The red, orange,
olive and green line show the returns of optimal positional momentum portfolios computed from
estimated parameters of VAR model when Ar = 0.5, 1, 3, and 5 respectively. The light green, light
blue, blue and purple line show the returns of optimal positional momentum portfolios computed
from fitted values of parameters from equations (3.16) and (3.17) when Ar = 0.5, 1, 3, and 5
respectively. The pink line shows the mean of the equally weighted portfolio.

Table 7 shows the cumulative return on the optimal positional momentum portfolios
with the inception date of April 2008 until October 2016. For all values of risk aversion
considered, the positional momentum portfolios based on estimated ρ’s provide higher
cumulative return than the portfolios based on fitted ρ’s, although these cumulative returns
are very close. Figure 15 shows the time series of cumulative returns on all positional
momentum portfolios. The positional momentum portfolios (based on estimated and fitted
ρ′s) with risk aversion equal to 0.5 are the best performing portfolios.
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Table 7: Cumulative Return of Positional Momentum Portfolios Until October 2016

Risk Aversion Estimated ρ’s Fitted ρ’s

Ar = 0.5 134.18 133.92
Ar = 1 67.137 67.004
Ar = 3 22.437 22.392
Ar = 5 13.497 13.470

EW 0.087

Note: Table 7 shows the cumulative return of optimal positional momentum portfolios with the
inception date of April 2008 based on future ranks predicted with estimated ρ̂11,t, ρ̂12,t from VAR(1)
model (equation 2.7) (Estimated ρ’s) and the fitted value of estimated coefficients from equations
(3.16) and (3.17) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1 (Fitted ρ’s).

Figure 15: Time Series of Cumulative Returns of Positional Momentum Strategies

Figure 15 compares the time series of cumulative returns of positional momentum portfolios if one
hold the portfolio until October 2016. The red, orange, olive and green line show the cumulative
returns of optimal positional momentum portfolios computed from estimated parameters of VAR
model when Ar = 0.5, 1, 3, and 5 respectively. The light green, light blue, blue and purple line show
the cumulative returns of optimal positional momentum portfolios computed from fitted values of
parameters from equations (3.16) and (3.17) when Ar = 0.5, 1, 3, and 5 respectively. The pink line
shows the mean of the equally weighted portfolio.

For risk aversion of 0.5, the positional momentum portfolio based on fitted ρ’s provides
higher cumulative returns than the portfolio with estimated coefficients until May 2009,
i.e. during the crisis and later, during the period January 2013 to February 2016 . The
positional momentum portfolio based on estimated ρ’s provides the highest return from
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May 2009 until June 2012. The EW portfolio has the lowest cumulative returns.

5.2 Optimal Positional Liquid Portfolios

The optimal positional liquid portfolios contain stocks with allocations β∗tv,t, defined as
follows:

β∗tv,t = 1
n
h+ ρ21,t+1(ut − ut) + ρ22,t+1(vt − vt)

Atvσ2
2,t+1

(5.65)

Table 8 shows the average of the time series of optimal positional liquid portfolios
returns and their standard deviations and compares those returns with the equally weighted
portfolio’s return. Two types of positional liquid portfolios are considered again: type 1
portfolios rely on the future ranks predicted with estimated ρ̂21,t, ρ̂22,t from the VAR(1)
model (equation 2.7) and type 2 portfolios are computed with the fitted values ˆ̂ρ21,t+1, ˆ̂ρ22,t+1

obtained from factor model (equations (3.18) and (3.19)). The positional liquid portfolios
are calculated for four different values of risk aversion (Atv = 0.5, 1, 3, 5).

Table 8: Summary of Positional Liquid Portfolios’ Returns

Estimated ρ’s Fitted ρ’s

Risk Aversion Mean S-D Mean S-D
Atv = 0.5 3.795 2.198 3.742 2.211
Atv = 1 1.899 1.100 1.873 1.106
Atv = 3 0.636 0.367 0.627 0.369
Atv = 5 0.383 0.221 0.378 0.222

Mean S-D

EW 0.004 0.067

Note: Table 8 shows the average of the time series return of the optimal positional liquid portfolios
with the future ranks predicted with estimated ρ̂21,t, ρ̂22,t from VAR(1) model (equation 2.7)
(Estimated ρ’s) and the with fitted value of estimated coefficients from equations (3.18) and (3.19)
ˆ̂ρ21,t+1, ˆ̂ρ22,t+1 (Fitted ρ’s).

The returns on both types of positional liquid portfolios with the estimated and fitted
autoregressive coefficients are positive and higher than on the EW portfolio. Among them,
portfolios based on the estimated ρ’s from the VAR(1) model provide higher average
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returns than those based on fitted ρ’s from equation (3.18) and (3.19), although their
returns are very close. By comparing Tables 8 with 6, we find that the positional liquid
portfolios provide higher average returns than the positional momentum portfolios. Hence,
the positional portfolios of liquid assets give higher average returns than the positional
portfolios of winners.

Figure 16: Time Series of Positional Liquid Strategies’ Returns

Figure 16 compares the time series of positional liquid portfolios’ returns. The red, orange, olive
and green line show the returns of optimal positional liquid portfolios computed from estimated
parameters of VAR model when Ar = 0.5, 1, 3, and 5 respectively. The light green, light blue, blue
and purple line show the returns of optimal positional liquid portfolios computed from fitted values
of parameters from equations (3.18) and (3.19) when Ar = 0.5, 1, 3, and 5 respectively. The pink
line shows the mean of the equally weighted portfolio.

Figure 16 shows the time series of returns on positional liquid portfolios for different
values of risk aversions. As expected, the positional liquid portfolios with risk aversion equal
to 0.5 perform better than the other portfolios. The EW portfolio has the lowest returns
in comparison to all portfolios considered. However, from November 2008 to February
2009, the EW portfolio provides higher returns than the positional liquid portfolios, which
reached their lowest values during the crisis.

Table 9 shows the cumulative returns on positional liquid portfolios with the inception
date of April 2008. We observe that, the positional liquid portfolios based on fitted ρ’s
outperform the other portfolios for all values of risk aversion considered. By comparing
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Table 9 with Table 7, we find that a positional portfolio of liquid assets provided higher
cumulative returns than a positional portfolios of winners.

Table 9: Cumulative Return of Positional Liquid Portfolios Until October 2016

Risk Aversion Estimated ρ’s Fitted ρ’s

Atv = 0.5 185.00 187.07
Atv = 1 92.544 93.581
Atv = 3 30.906 31.251
Atv = 5 18.578 18.786
EW 0.087

Note: Table 9 shows the cumulative return of optimal positional liquid portfolios with the inception
date of April 2008 based on future ranks predicted with estimated ρ̂21,t, ρ̂22,t from VAR(1) model
(equation 2.7) (Estimated ρ’s) and the fitted value of estimated coefficients from equations (3.18)
and (3.19) ˆ̂ρ21,t+1, ˆ̂ρ22,t+1 (Fitted ρ’s).

Figure 17: Time Series of Cumulative Returns of Positional Liquid Strategies

Figure 17 compares the time series of cumulative returns of positional liquid portfolios if one
hold the portfolio until October 2016. The red, orange, olive and green line show the cumulative
returns of optimal positional liquid portfolios computed from estimated parameters of VAR model
when Ar = 0.5, 1, 3, and 5 respectively. The light green, light blue, blue and purple line show the
cumulative returns of optimal positional liquid portfolios computed from fitted values of parameters
from equations (3.18) and (3.19) when Ar = 0.5, 1, 3, and 5 respectively. The pink line shows the
mean of the equally weighted portfolio.

39



Figure 17 shows the time series of cumulative returns on positional liquid portfolios
from April 2008 to October 2016. Both positional liquid portfolios based on the estimated
and fitted ρ’s with risk aversion 0.5 outperform the other portfolios. At the beginning of
the sampling period (April 2008 to July 2009), i.e. during the crisis, the cumulative returns
on the positional liquid portfolios are below the returns on the EW portfolio. After July
2009, the cumulative returns on the positional liquid portfolios increase and remain higher
than the cumulative returns on the EW portfolio.

5.3 Optimal Mixed Positional Portfolios

The optimal mixed positional portfolios contain assets with allocations β∗t defined as follows:

β∗t = 1
n
h+ Ar(ρ11,t+1(ut − ut) + ρ12,t+1(vt − vt))

∆t
+ Atv(ρ21,t+1(ut − ut) + ρ22,t+1(vt − vt))

∆t
(5.66)

where ∆t = A 2
r σ

2
1,t+1 + A 2

tvσ
2
2,t+1 + 2ArAtvσ12,t+1. Table 7 compare the average returns

and standard deviations on the positional mixed portfolios and on the EW portfolio. Again,
two types of positional mixed portfolios are considered, one with the future ranks predicted
with ρ̂jk,t, j, k = 1, 2 estimated by rolling (equation ) and another with ˆ̂ρjk,t+1, j, k = 1, 2
predicted from the factor model (equation).

Table 10, shows the positional mixed portfolios computed for different values of risk
aversion Ar = Atv = 0.5, 1, 3, 5. Both types of positional mixed portfolios provide returns
that are positive and higher than returns on the EW portfolio. Like in the case of optimal
positional momentum portfolios, the positional mixed portfolios based on estimated ρ’s
have higher returns than those based on fitted ρ’s.

By comparing Tables 10,8 and 6, we find that the positional liquid portfolios provide
higher average returns than the positional mixed portfolios. However, the average returns
on the positional mixed portfolios are higher than on the positional momentum portfolios.
Hence, the positional portfolio which contains liquid winners provides a higher average
return than a positional portfolio of winners. In fact, by considering the liquidity along
with the returns, we can improve the performance of positional portfolios.
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Table 10: Summary of Positional Mixed Portfolios’ returns

Estimated ρ’s Fitted ρ’s

Risk Aversion Mean S-D Mean S-D
Ar = Atv = 0.5 2.983 2.323 2.954 2.295
Ar = Atv = 1 1.493 1.177 1.479 1.164
Ar = Atv = 3 0.500 0.416 0.496 0.412
Ar = Atv = 5 0.302 0.266 0.299 0.263

Mean S-D

EW 0.004 0.067

Note: Table 10 shows the average of the time series return of the optimal positional mixed portfolios
with the future ranks predicted with estimated ρ̂11,t, ρ̂21,t, ρ̂21,t and ρ̂22,t from VAR(1) model
(equation 2.7) (Estimated ρ’s) and the with fitted value of estimated coefficients from equations
(3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1 (Fitted ρ’s).

Figure 18: Time Series of Mixed Positional Strategies’ Returns

Figure 18 compares the time series of the positional mixed portfolios’ returns. The red, orange, olive
and green line show the returns of optimal positional mixed portfolios computed from estimated
parameters of VAR model when Ar = Atv = 0.5, 1 , 3, and 5 respectively. The light green, light
blue, blue and purple line show the returns of optimal positional mixed portfolios computed from
fitted values of parameters from equations (3.16) to (3.19) when Ar = Atv = 0.5, 1 , 3, and 5
respectively. The pink line shows the mean of the equally weighted portfolio.

Moreover, a positional portfolios of liquid assets provide even higher average return than
a positional portfolios of liquid winners. Figure 18 shows the time series of returns on
the positional mixed portfolios. We observe very similar patterns as in Figure 16. The
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portfolios based on estimated ρ’s and fitted ρ’s with risk aversion of 0.5 provide the highest
returns, while the EW portfolio provides the lowest returns. During the crisis we see that
all portfolios’ returns drop lower than EW portfolio and provide negative returns. Also
in August 2010, December 2014 and 2015 we observe the negative returns for all these
portfolios. While in July and August 2009, between December 2014 to September 2015
and in March 2016, we observe high and positive returns for positional portfolios with
Ar = Atv = 0.5, 1.

Table 11 shows the cumulative returns on positional mixed portfolios with the inception
date of April 2008 until October 2016. We observe that cumulative return on positional
mixed portfolios based on fitted ρ’s are higher than those based on estimated ρ’s. Again,
higher risk aversion value provides lower cumulative return. In both Table 11 and 9 the
positional portfolios based on fitted ρ’s provide higher return than those based on estimated
ρ’s. While in Table 7, the positional portfolios based on estimated ρ’s yield in higher
returns. By comparing Table 11,9 and 7, we observe that a positional portfolio based on
liquid assets outperforms other positional portfolios. However, a positional portfolios based
on liquid winners has higher cumulative return than the positional portfolio based on just
winner stocks.

Figure 19 shows the cumulative returns on the positional mixed portfolios from April
2008 until October 2016. For risk aversion of 0.5, the positional portfolio of liquid winners
obtained from fitted ρ’s provides the highest return until January 2009 (crisis) and between
March 2012 and April 2016. From January 2009 to March 2012 and from May 2016 until
the end of the sampling period, the positional mixed portfolio based on estimated ρ’s has
the higher returns. Between March 2012 and May 2016 the positional mixed portfolios
based on fitted ρ’s with A = 0.5 outperforms other portfolios’ returns. The second best
returns belong to the positional mixed portfolios when A = 1. Again, between January
2009 to March 2012 and from May 2016 until the end of the sampling period, the positional
mixed portfolio based on estimated ρ’s has the higher returns, while between March 2012
and May 2016 the positional mixed portfolios based on fitted ρ’s with A = 0.5 outperforms
other portfolios’ returns.
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Table 11: Cumulative Return of Positional Mixed Portfolios Until October 2016

Risk Aversion Estimated ρ’s Fitted ρ’s

Ar = Atv = 0.5 159.13 160.02
Ar = Atv = 1 79.610 80.05
Ar = Atv = 3 26.595 26.743
Ar = Atv = 5 15.991 16.081

EW 0.087

Note: Table 11 shows the cumulative return of optimal positional mixed portfolios with the inception
date of April 2008 based on future ranks predicted with estimated ρ̂11,t, ρ̂12,t, ρ̂21,t and ρ̂22,t from
VAR(1) model (equation 2.7) (Estimated ρ’s) and the fitted value of estimated coefficients from
equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1 (Fitted ρ’s).

Figure 19: Time Series of Cumulative Returns of Positional Mixed Strategies

Figure 19 compares the time series of cumulative returns of positional mixed portfolios if one hold
the portfolio until October 2016. The red, orange, olive and green line show the cumulative returns
of optimal positional mixed portfolios computed from estimated parameters of VAR model when
Ar = Atv = 0.5, 1 , 3, and 5 respectively. The light green, light blue, blue and purple line show the
cumulative returns of optimal positional mixed portfolios computed from fitted values of parameters
from equations (3.16) to (3.19) when Ar = Atv = 0.5, 1 , 3, and 5 respectively. The pink line shows
the mean of the equally weighted portfolio.

Let us now assume that Ar 6= Atv. Below, we examine the positional mixed portfolios
with different values of risk aversion. First, we consider Ar fixed and compute the positional
mixed portfolios for different values of Atv. Next, we consider Atv fixed and compute the
positional mixed portfolios for different values of Ar.
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Figure 20 shows the time series of returns on the positional mixed portfolios when
Ar = 0.5. The positional mixed portfolios with risk aversion equal to 0.5 outperforming
the other portfolios. The EW portfolio has the lowest returns. Same as Figure 18, during
the crisis, August 2010, December 2014, March and December 2015 we observe that all the
portfolios returns have been dropped to the negative value. While their returns reached to
their positive peaks on June and October 2009 and April 2016.

Figure 20: Time Series of Mixed Positional Strategies’ Returns, Ar = 0.5

Figure 20 compares the time series of positional mixed portfolios’ returns for Ar = 0.5. The red,
orange, olive and green line show the returns of optimal positional mixed portfolios computed from
estimated parameters of VAR model when Atv = 0.5, 1, 3 and 5 respectively. The light green, light
blue, blue and purple line show the returns of optimal positional mixed portfolios computed from
fitted values of parameters from equations (3.16) to (3.19) when Atv = 0.5, 1, 3 and 5 respectively.
The pink line shows the mean of the equally weighted portfolio.

Figure 21 shows the time series of returns on the positional mixed portfolios for Ar = 1.
From April 2008 to January 2010 the positional mixed portfolios of both types with
Atv = 0.5 outperforms the other portfolios. Between February 2010 to June 2014 the
positional mixed portfolios based on fitted ρ’s with Atv = 0.5, 1 provide the highest returns.
After June 2014, the positional mixed portfolios based on estimated ρ’s with Atv = 0.5, 1
have the highest returns. The patterns of these two figures are very close and we observe
that by reducing the value Atv the portfolios’ returns decreased.
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Figure 21: Time Series of Mixed Positional Strategies’ Returns, Ar = 1

Figure 22: Time Series of Mixed Positional Strategies’ Returns, Ar = 3

Figure 21 and 22 compare the time series of positional mixed portfolios’ returns for Ar = 1
and 3 respectively. The red, orange, olive and green line show the returns of optimal positional
mixed portfolios computed from estimated parameters of VAR model when Atv = 0.5, 1, 3 and 5
respectively. The light green, light blue, blue and purple line show the returns of optimal positional
mixed portfolios computed from fitted values of parameters from equations (3.16) to (3.19) when
Atv = 0.5, 1, 3 and 5 respectively. The pink line shows the mean of the equally weighted portfolio.
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Figure 22 shows the time series of the returns on the positional mixed portfolios for
Ar = 3. The variations of the returns on Figure 22 is more than what we observe in Figure
21. The returns on positional mixed portfolios based on estimated and fitted ρ’s are very
close. Most of the time the positional mixed portfolios obtained from fitted ρ’s provide
higher returns especially those with Atv = 1, 3.

The peaks and falls in their returns are same as what we observe in Figure 21. During
the crisis, August 2010, December 2014, March and December 2015 all returns falls to the
negative values while on June and October 2009 and April 2016 they reach to their highest
values.

Figure 23 shows the time series of the positional mixed portfolios’ return for Ar = 5.
In contrast to what we observed in the previous Figures, the positional mixed portfolios
obtained from both estimated and fitted ’s with Atv = 5 provide this time returns higher
than the other portfolios. This result is illustrated further by the average and cumulative
returns given in Table 12 below.

Figure 23: Time Series of Mixed Positional Strategies’ Returns, Ar = 5

Figure 23 compares the time series of positional mixed portfolios’ returns for Ar = 5. The red,
orange, olive and green lines show the returns of optimal positional mixed portfolios computed from
estimated parameters of VAR model when Atv = 0.5, 1, 3 and 5 respectively. The light green, light
blue, blue and purple lines show the returns of optimal positional mixed portfolios computed from
fitted values of parameters from equations (3.16) to (3.19) when Atv = 0.5, 1, 3 and 5 respectively.
The pink line shows the mean of the equally weighted portfolio.
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Table 12, reports the average and cumulative returns and standard deviations for
positional mixed portfolios in 4 panels, which present the results obtained when Ar is
constant and Atv is allowed to vary. The panels show the results for Ar = 0.5, 1, 3, 5 ,
arranged from lowest to highest risk aversion. For all values of risk aversion Ar = 0.5, 1, 3, 5
displayed in the four panels, the mixed portfolios based on estimated ρ’s provide higher
average returns, while the positional mixed portfolios based on fitted ρ’s provide higher
cumulative returns.

The cumulative returns of these two strategies are very close. In the bottom panel we
observe that the positional mixed portfolios obtained from fitted ρ’s have higher cumulative
returns except for Atv = 0.5, where the portfolio obtained from estimated ρ’s provides a
higher return. Moreover, for Ar = 0.5 (top panel) and Ar = 1 the highest average and
cumulative returns are on portfolios with Atv = 0.5. In contrast, for Ar = 3, we observe
that the positional mixed portfolios of both types (estimated and fitted ρ’s) higher with
Atv equal to 1 and 3 provide higher average and cumulative returns than with Atv = 0.5.
The risk-return trade-off is reversed further for Ar = 5 displayed in the bottom panel.
Among these portfolios, those with Atv = 0.5 have the lowest average returns and the
portfolios with Atv = 5 produce the highest average and cumulative returns.

By comparing the four panels, we observe that when the value of risk aversion Ar

increases, the average and cumulative returns decrease. In terms of average returns, the
positional mixed portfolios obtained from estimated ρ’s outperform those obtained from
fitted ρ’s. However, the positional mixed portfolios obtained from fitted ρ’s provide higher
cumulative returns for all values of Ar. The only exception is Ar = 5 and Atv = 0.5 where
the portfolio obtained from estimated ρ’s provides a higher cumulative return than the one
obtained from fitted ρ’s.
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Table 12: Mixed Positional Portfolios’ Returns, Ar = const, Atv vary

Ar = 0.5 Average Return Cumulative Return
Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s

Atv = 0.5 2.983 2.954 159.13 160.02
Atv = 1 1.960 1.938 101.05 101.82
Atv = 3 0.679 0.671 33.780 34.109
Atv = 5 0.401 0.396 19.758 19.960

Ar = 1 Average Return Cumulative Return
Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s

Atv = 0.5 1.626 2.954 90.094 90.395
Atv = 1 1.960 1.479 79.610 80.057
Atv = 3 0.683 0.675 34.625 34.922
Atv = 5 0.411 0.406 20.500 20.694

Ar = 3 Average Return Cumulative Return
Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s

Atv = 0.5 0.459 0.457 26.694 26.706
Atv = 1 0.518 0.515 29.245 29.306
Atv = 3 0.500 0.496 26.595 26.743
Atv = 5 0.379 0.375 19.617 19.757

Ar = 5 Average Return Cumulative Return
Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s

Atv = 0.5 0.257 0.256 15.142 15.135
Atv = 1 0.286 0.284 16.444 16.457
Atv = 3 0.330 0.327 17.993 18.064
Atv = 5 0.302 0.299 15.991 16.081

Mean S-D

EW 0.0043 0.087

Note: Table 12 shows the average and cumulative return of optimal positional mixed portfolios with
the inception date of April 2008 based on future ranks predicted with estimated ρ̂11,t, ρ̂12,t, ρ̂21,t and
ρ̂22,t from VAR(1) model (equation 2.7) (Estimated ρ’s) and the fitted value of estimated coefficients
from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1 (Fitted ρ’s), considering Ar

constant.
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Figure 24 shows the time series of positional mixed portfolios with Atv = 0.5. This
figure is very similar to Figure 20. The highest returns belong to the positional mixed
portfolios of both types with Ar = 0.5 and the lowest returns belongs to EW. We also
observe that by increasing the value of Ar the returns of these portfolios decreased. The
returns on these portfolios reached to their peaks on August 2010, December 2014, March
and December 2015. While they dropped to their lowest values during crisis.

Figure 24: Time Series of Mixed Positional Strategies’ Returns, Atv = 0.5

Figure 24 compares the time series of positional mixed portfolios’ returns for Atv = 0.5. The red,
orange, olive and green lines show the returns of optimal positional mixed portfolios computed from
estimated parameters of VAR model when Ar = 0.5, 1, 3 and 5 respectively. The light green, light
blue, blue and purple lines show the returns of optimal positional mixed portfolios computed from
fitted values of parameters from equations (3.16) to (3.19) when Ar = 0.5, 1, 3 and 5 respectively.
The pink line shows the mean of the equally weighted portfolio.

Figure 25 shows the time series of the positional mixed portfolios for Atv = 1. Similar
to Figure 24, the portfolios with the lowest risk aversion Ar = 0.5 provide the highest
returns and the EW portfolio provides the lowest return. Figure 26 shows the time series
of positional mixed portfolios when Atv = 3. These time series of returns display the same
patterns as those in Figure 25. We notice the risk-return trade-off as well, as higher risks
yield higher returns.
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Figure 25: Time Series of Mixed Positional Strategies’ Returns, Atv = 1

Figure 26: Time Series of Mixed Positional Strategies’ Returns, Atv = 3

Figure 25 and 26 compare the time series of positional mixed portfolios’ returns for Atv = 1
and 3 respectively. The red, orange, olive and green lines show the returns of optimal positional
mixed portfolios computed from estimated parameters of VAR model when Ar = 0.5, 1, 3 and 5
respectively. The light green, light blue, blue and purple lines show the returns of optimal positional
mixed portfolios computed from fitted values of parameters from equations (3.16) to (3.19) when
Ar = 0.5, 1, 3 and 5 respectively. The pink line shows the mean of the equally weighted portfolio.
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Figure 27 provides the time series of the positional mixed portfolios when Atv = 5.
Similarly to the previous figures, we observe the risk-return trade-off. The higher risk
aversion, the lower the returns. The returns on all the positional portfolios are very close,
while the EW portfolio still provides the lowest return. Again during crisis all portfolios
provide negative returns, while on August and December 2009 they reached to their highest
values respectively.

Figure 27: Time Series of Mixed Positional Strategies’ Returns, Atv = 5

Figure 27 compares the time series of positional mixed portfolios’ returns for Atv = 5. The red,
orange, olive and green lines show the returns of optimal positional mixed portfolios computed from
estimated parameters of VAR model when Ar = 0.5, 1, 3 and 5 respectively. The light green, light
blue, blue and purple lines show the returns of optimal positional mixed portfolios computed from
fitted values of parameters from equations (3.16) to (3.19) when Ar = 0.5, 1, 3 and 5 respectively.
The pink line shows the mean of the equally weighted portfolio.

Table 13, shows the average and cumulative returns on positional mixed portfolios for
fixed values of Atv and varying Ar. The results on portfolios with risk aversion Atv = 0.5
are displayed in the top panel, followed by the results for Atv = 1, 3 and 5 are displayed in
four panels. Each panel presents the returns on portfolios with Ar = 0.5, 1, 3, 5, for a given
fixed value of Atv.
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Table 13: Summary of Mixed Positional Portfolios’ Returns, Atv = 0.5

Atv = 0.5 Average Return Cumulative Return

Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s
Ar = 0.5 2.983 2.954 159.134 160.027
Ar = 1 1.626 1.613 90.094 90.395
Ar = 3 0.459 0.457 26.694 26.706
Ar = 5 0.257 0.256 15.142 15.135

Atv = 1 Average Return Cumulative Return

Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s
Ar = 0.5 1.960 1.938 101.054 101.827
Ar = 1 1.493 1.479 79.610 80.057
Ar = 3 0.518 0.515 29.245 29.306
Ar = 5 0.286 0.284 16.444 16.457

Atv = 3 Average Return Cumulative Return

Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s
Ar = 0.5 0.679 0.671 33.780 34.109
Ar = 1 0.683 0.675 34.625 34.922
Ar = 3 0.500 0.496 26.595 26.743
Ar = 5 0.330 0.327 17.993 18.0641

Atv = 5 Average Return Cumulative Return

Risk Aversion Estimated ρ’s Fitted ρ’s Estimated ρ’s Fitted ρ’s
Ar = 0.5 0.401 0.396 19.758 19.960
Ar = 1 0.411 0.406 20.500 20.694
Ar = 3 0.379 0.375 19.617 19.757
Ar = 5 0.302 0.299 15.991 16.081

Mean S-D

EW 0.0043 0.087

Note: Table 13 shows the average and cumulative return of optimal positional mixed portfolios with
the inception date of April 2008 based on future ranks predicted with estimated ρ̂11,t, ρ̂12,t, ρ̂21,t and
ρ̂22,t from VAR(1) model (equation 2.7) (Estimated ρ’s) and the fitted value of estimated coefficients
from equations (3.16) to (3.19) ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1 (Fitted ρ’s), considering Atv

constant.

In all panels, the positional mixed portfolios obtained from estimated ρ’s provide higher
average returns. In terms of cumulative returns, the portfolios obtained from fitted ρ’s
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outperform the others portfolios. There is one exception, however. In the top panel, we
find that for Atv = 0.5 and Ar = 5, the portfolios with estimated coefficients provide higher
cumulative returns. Moreover, higher risks yield higher average and cumulative returns, as
observed earlier.

By comparing the results in all Tables provided in Section 5, we find that the positional
liquid portfolios provide the highest average and cumulative returns, as compared to the
other strategies. Hence, a positional portfolio of liquid assets provides higher returns than
a positional portfolio of winners. In addition, we find that the positional mixed portfolios
provide higher average and cumulative returns than the positional momentum portfolios. In
other words, a positional portfolio of liquid winners provides higher average and cumulative
returns than a positional portfolio containing just the winner stocks.

6 Conclusion

This paper introduced new positional investment strategies that maximize investors posi-
tional utility from portfolios of assets with expected high return ranks, high liquidity ranks
and high combined return-liquidity ranks. The optimal allocation vectors are computed
from return and volume change ranks modelled as a panel VAR with time varying coeffi-
cients. We show that the autoregressive VAR parameters can be well approximated by
linear functions of auto- and cross- correlations of the returns and volume change series of
the SPDR tracking portfolio.

The empirical results indicate that all positional portfolios provide positive average and
cumulative return. The positional liquid portfolios outperform the positional mixed and
momentum portfolios respectively. Also, we observe that for higher risk aversion values, the
average and cumulative returns on the positional portfolios decrease. In terms of average
returns, the positional portfolios obtained from estimated coefficients ρ̂11,t, ρ̂12,t, ρ̂21,t

and ρ̂22,t from VAR(1) model (equation 2.7) outperform the other portfolios. In terms
of cumulative returns, the positional portfolios obtained from fitted values of coefficients
based on auto- and cross- correlation of SPDR (ˆ̂ρ11,t+1, ˆ̂ρ12,t+1, ˆ̂ρ21,t+1 and ˆ̂ρ22,t+1) provide
higher returns.
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Appendices

A Histograms of Auto and Cross-Correlations of SPDR Re-
turn and Trade volume Changes and of the Series of Es-
timated Autoregressive Coefficients

The following figures show the histograms of the time series of sample auto- cross- correla-
tions of SPDR return and trade volume changes and of the time series of autoregressive
coefficients ρ̂jk,t, j = 1, 2, k = 1, 2, t = 1, ..., T of the VAR(1) model (equation 2.10). All
series are estimated by rolling with a window of 9 years over the sampling period.

Figure B.1, shows that sample auto-correlations of rSt take values mostly between
-0.1 and 0.05 and their density is asymmetric with a long left tail. The series ρ̂11t takes
smaller values between -0.01 and 0.006, and has a symmetric density. Figure B.2 shows
that the cross-correlations of rSt ,tvSt−1 take values mostly between -0.1 and 0.2 and their
density displays asymmetry in the right tail. The series ρ̂21t takes only positive values,
with the most frequently observed values in the interval (0.001,0.002). The density of cross-
correlations of tvSt ,rSt−1 given in Figure B,3 is almost bimodal. These cross-correlations take
positive values only. The density of ρ̂21t is similar in shape but its support includes small
positive and negative values. Figure B.4 shows the density of sample auto-correlations of
tvSt , which take negative values. Their density is symmetric and bell-shaped. The density
of ˆrho22t, which also take negative values only, is asymmetric with a long left tail.
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Figure B.1: Histograms of autocorrelations at lag one of rSt and of ρ̂11t

Figure B.1 compares the histograms of autocorrelations at lag one of SPDR’s returns and the estimated ρ̂11t from
equation (2.10). In both plots the red line shows the kernel density estimates.

Figure B.2: Histograms of cross-correlation of rSt , tvSt−1 and of ρ̂12t

Figure B.2 compares the histograms of cross-correlations of SPDR’s rS
t , tv

S
t−1 and the estimated ρ̂12t from equation

(2.10). In both plots the red line shows the kernel density estimates.
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Figure B.3: Histograms of cross-correlations of tvSt , rSt−1 and of ρ̂21t

Figure B.3 compares the histograms of cross-correlations of tvS
t , r

S
t−1 and the estimated ρ̂21t from equation (2.10). In

both plots the red line shows the kernel density estimates.

Figure B.4: Histograms of autocorrelations at lag one of tvSt and of ρ̂22t

Figure B.4 compares the histograms of autocorrelation at lag one of SPDR’s trade volume changes and the estimated
ρ̂22t from equation (2.10). In both plots the red line shows the kernel density estimates.
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B Factor models-scatters and regression lines

The following Figures 25-28 illustrate the regressions of ρ̂jk,t on auto- and cross-correlations
of SPDR returns and volume changes (equations 3.13 to 3.16). We observe that the scatters
are irregular and the linear models provide fairly good approximations.

Figure 28: Regression of ρ̂11t on AC(rS)t−1

Figure 29: Regression of ρ̂12t on CC(rstvS)t−1
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Figure 30: Regression of ρ̂21t on CC(tvSrs)t−1

Figure 31: Regression of ρ̂22t on AC(tvS)t−1

C Stochastic autoregressive coefficients

This section illustrates the changes to the optimal allocation vectors when the autoregressive
coefficients ρij,t+1 are considered as random functions of factor Ft. The factor Ft represents
jointly the returns rSt and trade volume changes tvSt of SPDR at time t that determine the
autoregressive coefficients ρij,t+1.
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The expected positional utilities to be maximized are as follows:

− E[exp(−ArQ
r
t+1(β′rrt+1)) | rt, tvt, Ft]

= −E{E[exp(−ArQ
r
t+1(β′rrt+1)) | rt, tvt, Ft+1]|rt, tvt, Ft}

= −E
[
exp

(
−Arρ11,t+1

n∑
i=1
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n∑
i=1

βr,ivi,t + 1
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2
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)
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]
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(C.1)

subject to β′rh = 1 and,

− E[exp(−AtvQ
tv
t+1(β′tvtvt+1)) | rt, tvt, Ft]

= −E{E[exp(−AtvQ
tv
t+1(β′tvtvt+1)) | rt, tvt, Ft]|rt, tvt, Ft}

= −E
[
exp

(
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i=1
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βtv,ivi,t+
1
2A 2
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β2
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2
2,t+1

)
|rt, tvt, Ft

]
= −Et(exp[−Atvρ21,t+1β

′
tvut −Atvρ22,t+1β

′
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2A 2
r β
′
tvβtvσ

2
2,t+1)

(C.2)

subject to β′tvh = 1.
The above optimization problems are difficult to solve. In order to simplify the optimal

allocation vectors, we can consider their first-order expansion with respect to ρjk,t+1 (where
j, k = 1, 2) for small ρjk,t+1. At first-order approximation with respect to the persistence
parameters, we have Et(σ2

1,t+1) = Et(σ2
2,t+1) ' 1 14.

14 In Section 2 we showed that in practice, the positional persistence values at different dates can be
rather small (see Figures 1,2). Therefore the assumption that Etσ

2
1,t+1 = Etσ

2
2,t+1 ' 1 is plausible
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which are objective functions similar to those in Section () with the autoregressive coefficients
ρjk,t+1, j, k = 1, 2 replaced by their expectations Etρjk,t+1, j, k = 1, 2.
Hence, the approximate optimal positional allocations are as follows:

β∗r,it = 1
n

+ 1
Ar

[
Etρ11,t+1uit + Etρ12,t+1vit −

1
n

n∑
i=1

(Etρ11,t+1uit + Etρ12,t+1vit)
]

(C.5)

β∗tv,it = 1
n

+ 1
Atv

[
Etρ21,t+1uit + Etρ22,t+1vit −

1
n

n∑
i=1

(Etρ21,t+1uit + Etρ22,t+1vit)
]

(C.6)

By simplifying the above expressions we get:

β∗r,it = 1
n

+ 1
Ar

(
Etρ11,t+1(uit − ut) + Etρ12,t+1(vit − vt)

)
(C.7)

β∗tv,it = 1
n

+ 1
Atv

(
Etρ21,t+1(uit − ut) + Etρ22,t+1(vit − vt)

)
(C.8)
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where ut = 1/n
∑n
i=1 uit and vt = 1/n

∑n
i=1 vit are the cross-sectional averages of the

Gaussian ranks at time t. When the number of assets (n) tends to infinity, these cross-
sectional averages tend to zero, which is the mean of the standard Normal distribution.
The above optimal allocations are linear combination of two portfolios. The first one
has positive weights 1

n . The second portfolio on the right hand side of each solution is
an arbitrage portfolio (zero-cost portfolio), with weights involving the ranks (Etρ11,tuit +
Etρ12,tvit and Etρ21,tuit + Etρ22,tvit, respectively.

D Square root of matrix Σ

To find the matrix Σ1/2 let us consider:

Σ =
(

1− ρ2
11 − ρ2

12 1− ρ11ρ21 − ρ12ρ22
1− ρ21ρ11 − ρ22ρ12 1− ρ2

21 − ρ2
22

)
=
(
A B
B D

)
(A.1)

The square root of variance matrix is:

Σ1/2 = ±
( 1
R

)(A+ T B
B D + T

)
(A.2)

where T = |Det|1/2 and R2 = A+D + 2T . We get:
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√
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√
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√
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(A.3)

By substituting A.3 into A.2 we get:
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√
AD −B2

)(
A+
√
AD −B2 B

B D +
√
AD −B2

)

Σ1/2 = ±

 A+
√
AD−B2√

A+D+2
√
AD−B2

B√
A+D+2

√
AD−B2

C√
A+D+2

√
AD−B2

D+
√
AD−B2√

A+D+2
√
AD−B2


(A.4)

By substituting A,B and D from equation A.1 into equation A.4 we get the following:
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