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INTRODUCTION

The aim of the paper :

address the problems of partial observability encountered in
epidemiological research on COVID-19.

• First, only cross-sectionally aggregated data are easily
available, not the individual medical histories of the individuals.

• Second, some individuals are infected and asymptomatic.
They are undetected in the early phase of the epidemics and
the number of recovered, immunized people is not available.
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INTRODUCTION

We develop a model based approach to solve this issue.

•We extend the standard SIRD (Susceptible, Infected,
Recovered, Diceased) model, introduced in Kermack, Mc
Kendrick (1927), PRSS, by disentangling among the infected,
the detected and the undetected.

and look for additional information in order to identify the
number of infected undetected : the total daily number of
deceased people (not only from coronavirus).
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INTRODUCTION

An analysis done rather early.

• on French data (See Brown et al. (2020) for North Carolina).

• from March, 16, to April 4, 2020, (22 days)

• in a stable environment of social distancing measures
(total lock-down on the week end of March 16, just after the first
round of municipal elections)

• based on data available on April 06, the first publication of the
daily total number of deceased.

• used with other aggregate counts :

detected, hospitalized, recovered (detected), deceased (total
and from COVID) (more or less reliable).
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Figure 3 : Evolution of Observed Counts, 03/16 to 04/06, France

The figure shows the evolution of observed daily counts. In the panel of deceased (bottom, right), the solid line
shows the total deceased in France and the dashed line the (reported) deceased due to Covid-19
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THE MODEL

A model with 5 states :

1 = S (Susceptible), 2 = IU (Infected, Undetected), 3 = ID
(Infected, Detected,) 4= R (Recovered), 5 = D (Deceased)

p1t ,p2t , . . . ,p5t the marginal probabilities of the states at date t .

The dynamics is defined by the structure of the transition
matrix.

The model is written in discrete time.
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THE MODEL

row 1 : (1− p15)π11t , (1− p15)π12t , (1− p15)π13t ,0,p15,

where : π11,t ' 1, π12t ' exp[a1 + b1p2(t − 1) + c1p3(t − 1)]
π13t ' exp[a2 + b2p2(t − 1) + c2p3(t − 1)]

row 2 : 0 ; p22 ; p23 ; p24 ; p25
row 3 : 0 ; 0 ; p33 ; p34 ; p35
row 4 : 0 ; 0 ;0 ; p44 ; p45
row 5 : 0 ; 0 ;0 ;0 ; 1
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THE MODEL

A specific structure

• multinomial logit for the transmission effects
a1,b1, c1,a2,b2, c2 : transmission parameters

• triangular form, in particular recovered are permanently
immunized (or at least for a long period)

• constant recovery rate, with duration of infection period
(hospitalization) with exponential distribution

D as an absorbing state

A model with 13 parameters :
6 for the transmission, 7 time independent transition
probabilities
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THE MODEL

This differs from the basic SIR in two respects :

• the introduction of two compartments IU, ID instead of a
single one I.

• the form of the transmission function, that in a standard
version would be :

π∗12t ' b1p2(t − 1) + c1p3(t − 1)
π∗13t ' b2p1(t − 1) + c2p3(t − 1)

Standard SIR : No infected people in the country, no infection
[closed economy implying herd immunity]

Modified SIR :
if p2(t − 1) = p3(t − 1) = 0, π12t ' exp a1, π13t ' exp a3
[open economy implying no herd immunity]
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Simulation for given values
p15 = p45 fixed at the long term (daily) mortality rate
p25 the average mortality rate for people detected in hospital
p35 between both to account for less fragile asymptomatic
people.
The transmission parameters have been set to provide about
60 new daily detected infection at the beginning (for a French
population of 60 millions of inhabitants)
1 500 new daily detected infections 30 days after the beginning.

Note : no effect of an increase of tests during the epidemics
[due to shortage of test components for PCR and no validated
serological tests]

p(0) = (1,0,0,0,0, ).
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Figure 1 : Evolution of Marginal Probabilities

Solid line-baseline, dotted line - doubled transmission parameters, dashed line - halved transmission parameters
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Figure 2 : Evolution of New Counts
Solid line-baseline, dotted line - doubled transmission

parameters, dashed line - halved transmission parameters
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ESTIMATION

Latent model
A large panel of individual histories

Yi,t , i = 1, . . . ,n, t = 1, . . . ,T .
Assumption A.1 :
i) At t fixed, the variables Yi,t , i = 1, . . . ,n have the same
marginal distribution p(t) with components :

pj(t) = P[Yi,t = j].
ii) The processes (Yi,t , t = 1, . . . ,T ), i = 1, . . . ,n are
independent (heterogenous) Markov processes with transition
P[p(t − 1), θ], where θ are the parameters.

Under Assumption A.1, the cross-sectional frequencies f (t) are
consistent of p(t), asymptotically normal, with a structure of
variance-covariance given in the paper.
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ESTIMATION

Assumption A.2 :
The observations are Ât = Aft , where A is an aggregation
matrix with zeros and ones.

• In the literature : A = Id , all f ′t s are observed Mc Rae (1977),
Econometrica, Miller, Judge (2015), Econometrics.

• In our application : f3(t), f5(t) only are observed

• In a (SI)2 model with 2 countries

S1 : susceptible in 1, I1 : Infected in 1
S2 : susceptible in 2, I2 : Infected in 2

We may observe aggregates corresponding to S1US2 and
I1UI2.
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ESTIMATION

The estimation is based on estimating equations [Godambe,
Thompson (1974), AMS]

p(t) = P[p(t − 1); θ]′p(t − 1), t = 1, . . . ,T .

More precisely :

[p̂(1), . . . , p̂(T ), θ̂] = arg minp(t),θ ‖p(t)− P[p(t − 1); θ]′p(t − 1)‖2,

s.t. Ap(t) = Af (t) = Ât , t = 1, . . . ,T ,

where ‖.‖ is an Euclidean norm.

The estimators are consistent, asymptotically normal, for
n→,T fixed
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ESTIMATION

A Kalman filter can be applied to a (pseudo) state space model
to find numerically the solution :

Ât = Af (t),

f (t) = p(t) + u(t),

p(t) = P[p(t − 1); θ)p(t − 1),

with three layers, including two layers of state variables for p(t)
and f (t), respectively, and some deterministic equations.

Remark : Different forms of V [u((1), . . . ,u(T )] can be used,
providing always consistent estimators.
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ESTIMATION

Identification

Partial observability may create identification issues for θ. This
is not the case in our framework, due to :

• the triangular form of P.

• the nonlinear dynamics in the transmission function.

Intuitively, the identification arises, since

• we observe a nonstationary evolution

• the unobserved IU imply a mixture of "logistic" evolutions at
different speeds.

20/36



Time Varying Markov Process with Partially Observed Aggregate Data : An Application to Coronavirus

ESTIMATION

Estimated parameters

Focus on the transmission parameters and recovery
parameters

Table 2. Confidence Intervals

parameter CI parameter CI
b1 [0.0031, 0.0052] p23 [0.0099, 0.0560]
b2 [0.252e-05, 4.032e-05] p24 [0.0273, 0.0942]
c1 [4.497e-05, 17.203e-05] p25 [0.00098, 0.00356]
c2 [0.00023, 0.00047] p34 [0.068, 0.1057]

p35 [0.0092, 0.0214]
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Figure 4 : Estimated and Observed Counts
The estimated counts - solid line, observed counts - dashed line. The
figure compares the estimated counts of Infected and Undetected
with the observed Infected Detected (top panel), and Recovered
estimated and reported as hospitalizations (bottom panel). The
dotted lines depict the confidence intervals.
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Figure 5 : Projected Evolution of Marginal Probabilities.

The figure displays projected daily marginal probabilities of all states over 25 years.
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ESTIMATION

Ex-post it is possible to compare the predictions of the model
with the ex-post realizations.

• the database on total deceased has been updated even for
the initial period

• strong week end effects (but not at the beginning)
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Figure 6 : Projected Evolution of Net Balance of Hospitalization
The dashed line shows the projected daily net changes in hospitalization ∆p3(t) ∗ pop over 60 days following the

end of sample on April 6. The dashed line depicts the true net changes in hospitalization observed ex-post. On April
15 (i.e. after 10 days) the net changes in hospitalization become negative (-513) and remain negative with high

variation between -792 on 06/05 and 0 on 04/26. The dotted lines represent the CI of the projection.
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CONCLUDING REMARKS

We have introduced a model based methodology to solve the
problems of partial observability, in particular to reconstitute the
number of infected, undetected individuals.

message on data :
important data are often missing

total daily number of deceased (important for identification)(see
also Li et al. (2020) with a multicities model and travel data)

the aggregate flows, not only the cross-sectional aggregates
(for improving the accuracy) [Breto et al. (2009)].

Other data are not reliable, due to unprecise definitions, i.e. the
number of deceased due to COVID,

or too sentitive to some health (test) policies as the number of
confirmed cases.
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CONCLUDING REMARKS

Message for test policies

There exist several types of tests :

• The PCR [Polymerase Chain Reaction] tests

• The serological tests

It is expected to diminish the number of infected undetected
(spot and ex-post) by increasing the number of tests, but
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• At the beginning of the epidemics, serological tests were not
validated ;

• There are a significant rates of false negative and of false
positive ;

• This is costly 80 e per PCR test

• The test assignment is endogenous (tracing) (not at random),
implying a selectivity bias.
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CONCLUDING REMARKS

Message for epidemiological modelling

• The pseudo state space representation is valid is n is large,
with also the npj(t) large enough. This is not the case at the
very beginning of the epidemics, or if the analysis is performed
on small regions, or subgroups.

The asymptotic normality is replaced by asymptotic Poisson,
with consequences on consistency.

• The basic model has "time" independent transmission
parameters : this does not account for evoluting health policies
as well as for frailty effects (i.e. the mover-stayer phenomenon).
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(supplementary material)
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COVARIANCE OPERATOR

The frequencies f̂ (t) are such that :

Cov [f̂ (t), f̂ (τ)] = n Cov [Z (t),Z (τ)],

where Z (t) is the J = 5 dimensional vector, whose components
are the indicators of Y (t) = 1,2,3,4,5.

We have : E(Zt |Zt−1) = P(t − 1) Zt−1.

By iterated expectation :

E(Zt |Zt−h) = π(t − 1; h) Zt−h,

where π(t − 1; h) = P(t − 1) . . .P(t − h).
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COVARIANCE OPERATOR

Therefore,

Ωt ,t−h = Cov(Zt ,Zt−h)

= E(ZtZ ′t−h)− E(Zt )E(Zt−h)′

= E [π(t − 1; h)Zt−hZ ′t−h]− p(t)p′(t − h)

= π(t − 1,h)E(diagZt−h)− p(t)p′(t − h)

= π(t − 1,h)diag[p(t − h)]− p(t)p′(t − h).
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