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Abstract

We derive a coherent multi-factor model for pricing various derivatives written

on the same underlying (potentially non-tradable) asset. We show the difference

between a case in which the underlying asset is self-financed and tradable and a

case in which it is not. In the first case, an additional arbitrage condition must

be introduced, which implies nontrivial parameter restrictions. These restrictions

can be empirically tested to check whether the derivatives are priced as if the

underlying were self-financed and tradable. This methodology also allows us to

define the tradability premium. As an illustration, we compute the daily trad-

ability premium for the S&P 500.

Keywords: Index Derivatives, Non-tradable Index, Generalized Method of

Moments, Mispricing, Tradability Premium, Liquidity Premium

JEL Classification: C13, C51, G12, G13
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The S&P 500 Index is an artificial number constructed to reflect the evolution of the

market. The index is not traded in the financial market and it does not represent the price

of a tradable portfolio. As explained in Xu (2014), it cannot be replaced with a mimicking

portfolio, such as the SPDR, due to the way in which the S&P 500 Index is calculated and

maintained, the lack of perfect foresight, the illiquidity of some index component stocks,

and because of differences in the ways in which dividends and transaction costs are (not)

accounted for. In other words, we cannot buy and hold a portfolio in the financial market

equivalent to the index’s current value and be guaranteed that this portfolio can be sold in

the future for the index’s value at that point.

The non-tradability of the S&P 500 Index has significant implications for risk hedging

and pricing constraints. For example, the well-known Black-Scholes model [See Black and

Scholes (1973) and Merton (1973)] assumes that the underlying asset is tradable and follows

a geometric Brownian motion process with constant volatility. Therefore, the market is

completed by the underlying asset itself and the underlying asset can be used to fully hedge

against the risk involved. Under the no-arbitrage condition, the market price of risk is

determined uniquely by the price of the underlying asset. All derivatives written on the

underlying asset can be evaluated uniquely using this market price of risk combined with

the terminal condition of the respective derivatives. If the underlying asset is non-tradable,

then the underlying asset cannot be used as part of the arbitrage strategy and the value of

the underlying asset does not need to satisfy the no-arbitrage condition. The risk associated

with the underlying asset is not hedged by itself and the expected return of the underlying

asset under the risk-neutral probability is not necessarily equal to the risk-free rate. The

knowledge of the value of the underlying asset does not fully reveal the price of the risk.

Therefore, the prices of options written on a non-traded underlying asset with a price that

follows a geometric Brownian motion process do not have to be evaluated using the Black-

Scholes formula. Similar ideas apply to other models. For instance, the stochastic volatility

3



models in Heston (1993) and Ball and Roma (1994) assume that the expected return of

the underlying asset is equal to the risk-free rate under the risk-neutral probability. In other

words, those models assume that the underlying asset is tradable and that the risk associated

with the underlying asset is hedged by itself. In general, because of the non-tradability of

the S&P 500 Index, the prices of its options do not have to satisfy the restrictions imposed

by pricing models that are based on the assumption that the underlying asset is a security

traded in the market.

In this paper, we introduce a coherent multi-factor model for pricing various derivatives

such as forwards, futures, and European options, written on the non-tradable S&P 500 Index.

The model illustrates the relationship between the index and its futures, and the relationship

between the index and its put and call options when the underlying asset is non-tradable. We

also consider what the prices of the derivatives would be if the index were self-financed and

tradable. The model explains why the prices of derivatives written on a tradable asset can

differ from those written on a non-tradable asset. When the underlying asset is self-financed

and tradable, it also needs to satisfy the no-arbitrage condition, which implies additional

nontrivial parameter restrictions. This setup allows us to compute the premium of tradability

for each day, which is defined as the difference between the market risk premium implied by

the unrestricted model and the market risk premium implied by the restricted model. We

use simulated data to illustrate how to estimate the tradability premium and its impact on

derivative pricing. We find that certain derivatives, such as options, will be significantly

mispriced if the tradability premium is ignored .

In this framework, we are also able to test whether the S&P 500 derivatives are priced

by investors as if the index were self-financed and tradable. Our factor models are estimated

by combining the spot, futures, and options data, and using the unscented Kalman Filter

(UKF) method. The Wald tests strongly reject the null hypothesis that the derivatives are

priced as if the index were self-financed and tradable. Our diagnostic analysis also shows
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that the multi-factor models are superior to the one-factor model. To test the robustness of

our results, we investigate the restricted version of our model by assuming that the S&P 500

Index is self-financed and tradable. Both in-sample and out-of-sample pricing errors show

that the unrestricted model performs statistically and economically better than the restricted

model. The estimated tradability premium is significantly different from zero, which means

that the tradability of the underlying asset is an important factor in derivative pricing.

Our model can easily be extended to pricing derivatives written on other non-tradable

indices, such as a retail price index, a meteorological index, an index summarizing the results

of a set of insurance companies, a population mortality index, or the VIX.

The rest of the paper is organized as follows. In Section 1, we present a coherent model for

pricing derivatives written on the S&P 500. In Section 2, we derive the parameter restrictions

that would characterize the derivative pricing if the index were tradable. This allows us to

explain how derivative prices can differ for tradable and non-tradable underlying assets. We

discuss the importance of tradability premium in derivative pricing in Section 3. In Section 4,

we undertake a Monte Carlo simulation with realistically calibrated parameters to illustrate

how the tradability premium is measured and how it affects the pricing of derivatives. In

Section 5, we discuss the estimation method and testing procedure. In Section 6, we report

the empirical results and compute the daily tradability premium. We conclude in Section 7.

The technical results and details are gathered in the appendices.

1 The Pricing Model

Under the absence of arbitrage opportunity (AAO), market prices have to be compatible

with a valuation system based on stochastic discounting [Harrison and Kreps (1979)]. The

pricing formulas can be written in either discrete time or continuous time, according to the

assumptions of discrete or continuous trading (and information sets). The modern pricing

methodology requires a joint, coherent specification of the historical and risk-neutral dis-

5



tributions. For this purpose, we follow the practice initially introduced by Constantinides

(1992), which specifies a parametric historical distribution and a parametric stochastic dis-

count factor.

1.1 Assumptions

1.1.1 Historical Dynamics of the Index

The value of the index at date t is denoted by It. We assume that the log index satisfies

a diffusion equation with affine drift and volatility functions of K underlying factors {xk,t},

k = 1, · · · , K.

Assumption 1.

d log It = (µ0 +
K∑
k=1

µkxk,t)dt+ (γ0 +
K∑
k=1

γkxk,t)
1/2dwt, (1.1)

where {µk} and {γk} , k = 0, · · · , K are constants, and {wt} is a Brownian motion.

The underlying factors summarize the dynamic features of the index. As seen in Equation

(1.2), they are assumed to be independent Cox, Ingersoll, and Ross (CIR) processes that are

independent of the standard Brownian motion {wt}. As the CIR processes are nonnegative,

the volatility of the log index is positive whenever parameters {γk}, k = 0, · · · , K are positive.

This positive parameter restriction is imposed throughout the rest of the paper.

Assumption 2. The CIR processes {xk,t}, k = 1, · · · , K satisfy the stochastic differential

equations:

dxk,t = ξk(ζk − xk,t)dt+ νk
√
xk,tdwk,t, k = 1, · · · , K, (1.2)

where ξk, ζk and νk are positive constants, and {wk,t}, k = 1, · · · , K are standard independent

Brownian motions that are independent of {wt}.

The condition ξkζk > 0 ensures the nonnegativity of the CIR process (for a positive

initial value x0 > 0), while the conditions ξk > 0 and ζk > 0 imply the stationarity of the

CIR process. The condition νk > 0 can always be assumed for identifiability reason.
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This general specification of the index dynamics includes the Black-Scholes model [Black

and Scholes (1973)], when µk = γk = 0, k = 1, · · · , K; the stochastic volatility model

considered by Heston (1993) and Ball and Roma (1994), when K = 1 and x1 is interpreted

as a stochastic volatility; or the model with stochastic dividend yield [see, for example,

Schwartz (1997)], when K = 1 and x1 appears only in the drift.

The transition distribution of the integrated CIR process is required for derivative pricing.

This distribution is characterized by the conditional Laplace transform Et[exp(−z
∫ t+h
t

xk,τdτ)],

where Et denotes the conditional expectation given the past values of the process and z is a

nonnegative constant (or, more generally, a complex number), which belongs to the domain

of the existence of the conditional Laplace transform. This domain does not depend on past

factor realizations (i.e., on the information set). The conditional Laplace transform of the

integrated CIR process allows for a closed-form expression [see, e.g., Cox, Ingersoll, and Ross

(1985b)] and is an exponential affine function of the current factor value. It is given by:

Et[exp(−z
∫ t+h

t

xk,τdτ)] = exp[−Hk
1 (h, z)xk,t −Hk

2 (h, z)], (1.3)

where

Hk
1 (h, z) =

2z(exp[εk(z)h]− 1)

(εk(z) + ξk)(exp[εk(z)h]− 1) + 2εk(z)
,

Hk
2 (h, z) =

−2ξkζk
ν2k

{log[2εk(z)] +
h

2
[εk(z) + ξk] (1.4)

− log[(εk(z) + ξk)(exp(εk(z)h)− 1) + 2εk(z)]},

εk(z) =
√
ξ2k + 2zν2k .

This formula also holds for a complex number z = u+ iv whenever u > −1 and v ∈ R.

The joint dynamics of factors and log index can be represented by means of the stochastic

differential system in which both the drift vector and the volatility-covolatility matrix are

affine functions of the current values of the joint process (x1,t, · · · , xK,t, log It)
′. Thus, the

stacked process (x1,t, · · · , xK,t, log It)
′ is an affine process [see Duffie and Kan (1996)], and the
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conditional Laplace transform of the integrated process Et[exp
∫ t+h
t

(z1x1,τ + · · · + zKxK,τ +

z log Iτ )dτ ] will also allow for an exponential affine closed-form expression.

1.1.2 Specification of the Stochastic Discount Factor

The model is completed with a specification of a stochastic discount factor (SDF), which we

later use to price all derivatives written on the index.

Assumption 3. The stochastic discount factor (SDF) for period (t, t+dt) is

Mt,t+dt = exp(dmt) = exp[(α0 +
K∑
k=1

αkxk,t)dt+ βd log It]

= exp{[α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,t]dt+ β(γ0 +
K∑
k=1

γkxk,t)
1/2dwt}. (1.5)

This SDF explains how to correct for risk when pricing derivatives. The “risk premia”

depend on the factors and index values, whereas the sensitivities of this correction with

respect to those risk variables are represented by the α and β parameters. The market risk

premium associated with wt is −β(γ0+
∑K

k=1 γkxk,t). This specification of the SDF implicitly

assumes that the market prices of the risk factors {wk,t}, k = 1, · · · , K are 0. Equivalently,

Equation (1.2) also describes the risk-neutral distribution of {xk,t}, k = 1, · · · , K. Under the

risk-neutral probability, the joint dynamics of the underlying factors and log index can be

represented by means of the stochastic differential system:

d



x1,t
...

xK,t

log It


=



ξ1(ζ1 − x1,t)
...

ξK(ζK − xK,t)

µ0+βγ0+
∑

(µk+βγk)xk,t)


dt (1.6)

+



ν1
√
x1,t 0 · · · 0

0
. . .

...

... νK
√
xK,t 0

0 · · · 0
√
γ0+

∑
γkxk,t





dw1,t

...

dwK,t

dw∗t


,
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where {wk,t}, k = 1, · · · , K, and {w∗t } are standard independent Brownian motions under

the risk-neutral probability. Thus, only the last row is corrected for risk. This differential

stochastic system is still an affine process.

1.2 Pricing Formulas for European Derivatives Written on the In-

dex

As mentioned above, the arbitrage pricing proposes a valuation approach, which is com-

patible with observed market prices and proposes coherent quotes for non-highly traded

derivatives. More precisely, the value (price) at time t of a European derivative paying

g(x1,t+h, · · · , xK,t+h, It+h) at time t+ h is:

c(t, t+ h, g) = Et[exp(

∫ t+h

t

dmτ )g(x1,t+h, · · · , xK,t+h, It+h)]. (1.7)

The aim of this section is to derive explicit valuation formulas for European index deriva-

tives1. All of the formulas are derived from the valuation of European index derivatives with

power payoff. Such derivatives are not traded or, more generally, quoted. However, these

basic computations are used to derive:

• The risk-free term structure of interest rates,

• The forward and futures prices of the index, and

• The prices of European options written on the index.

1.2.1 Power Derivatives Written on the Index

The proof for the following proposition is provided in Appendix A.
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Proposition 1. The value at time t of the European derivative paying exp[u log(It+h)] =

(It+h)
u at maturity t+h is:

C(t, t+ h, u) = Et[(It+h)
u exp(

∫ t+h

t

dmτ )]

= exp(u log It) exp[−hz0(u)−
K∑
k=1

Hk
1 (h, zk(u))xk,t −

K∑
k=1

Hk
2 (h, zk(u))], (1.8)

where

zk(u) = −αk − (β + u)µk −
γk
2

(β + u)2, ∀ k = 0, · · · , K, (1.9)

and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(1.4).

Proposition 1 holds if and only if zk(u) > −1, ∀ k = 1, · · · , K. When we apply this

formula to different traded derivatives (i.e., different values of u), the inequalities above

imply restrictions on parameters α, β, and γ.

1.2.2 The Risk-free Term Structure

The zero-coupon bonds correspond to a unitary payoff and their prices B(t, t+h) correspond

to the special case of C(t, t + h, u) in which u = 0. The continuously compounded risk-free

interest rates are defined by r(t, t + h) = − 1
h

logB(t, t + h). We arrive at the following

proposition:

Proposition 2. The prices of the zero-coupon bonds are:

B(t, t+ h) = exp[−hz0(0)−
K∑
k=1

Hk
1 (h, zk(0))xk,t −

K∑
k=1

Hk
2 (h, zk(0))], (1.10)

where zk(·) is defined in Equation (1.9), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(1.4).

We deduce the expressions of the interest rates:

r(t, t+ h) = −1

h
logB(t, t+ h)

= z0(0) +
1

h

K∑
k=1

Hk
1 (h, zk(0))xk,t +

1

h

K∑
k=1

Hk
2 (h, zk(0)). (1.11)
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The risk-free interest rates are affine functions of the CIR risk factors. This specification

is the standard affine term structure model introduced in Duffie and Kan (1996) [see also

Dai and Singleton (2000)]. It includes the one-factor CIR model [Cox, Ingersoll, and Ross

(1985b)] as well as the multi-factor term structure model found in Chen and Scott (1993).

As explained in subsection 1.2.1, the following restrictions are imposed on the parameters:

zk(0) = −αk − βµk −
γk
2
β2 > −1, ∀ k = 1, · · · , K. (1.12)

The short rate is defined by r(t) = limh→0− 1
h

logB(t, t + h). The proof of the following

proposition is provided in Appendix B.

Proposition 3. The short rate is given by:

r(t) = lim
h→0
−1

h
logB(t, t+ h) =

d[− logB(t, t+ h)]

dh
|h=0

= z0(0) +
K∑
k=1

zk(0)xk,t. (1.13)

1.2.3 Forward Prices for the S&P 500 Index

A forward contract is an agreement to deliver or receive a specified amount of the underlying

asset (or the equivalent cash value) at a specified price and date. A forward contract always

has zero value when it is initiated. No money is exchanged initially or during the life of the

contract, except at the maturity date when the price paid is equal to the specified forward

price. The proof of the following proposition is provided in Appendix C.

Proposition 4. The forward prices are given by:

f(t, t+ h) =
C(t, t+ h, 1)

C(t, t+ h, 0)

= It exp{−hl0 −
K∑
k=1

Hk
1 (h, zk(1))xk,t +

K∑
k=1

Hk
1 (h, zk(0))xk,t

−
K∑
k=1

Hk
2 (h, zk(1)) +

K∑
k=1

Hk
2 (h, zk(0))}, (1.14)
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where

lk = −µk −
1 + 2β

2
γk, ∀ k = 0, · · · , K, (1.15)

zk(·) is defined in Equation (1.9), l0 is defined in Equation (1.15), and Hk
1 (·, ·) and Hk

2 (·, ·)

are given in equation(1.4).

In addition to the restrictions in (1.12), the following restrictions are imposed on the

parameters:

zk(1) = −αk − (β + 1)µk −
γk
2

(β + 1)2 > −1, ∀ k = 1, · · · , K. (1.16)

1.2.4 Futures Prices

Let us now consider the price at time t of a futures contract written on It+h. The major

difference between a futures contract and a forward contract is the mark-to-market practice

for the futures. A futures contract has also zero value when it is issued and no money is

exchanged initially. However, at the end of each trading day during the life of the contract,

the party against whose favor the price changes must pay the amount of change to the winning

party. In other words, a futures contract always has zero value at the end of each trading day

throughout the life of the contract. If the interest rate is stochastic, the forward price and

the futures price are generally not the same [see Cox, Ingersoll, and Ross (1981) and French

(1983)]. The proof of the following proposition is provided in Appendix D.

Proposition 5. The prices at time t of futures written on It+h are given by:

Ft,t+h = Et[exp(

∫ t+h

t

dmτ ) exp(

∫ t+h

t

rτdτ)It+h]

= It exp[−hl0 −
K∑
k=1

Hk
1 (h, lk)xk,t −

K∑
k=1

Hk
2 (h, lk)], (1.17)

where lk is defined in Equation (1.15), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation(1.4).

As explained earlier, in addition to the restrictions in (1.12), the following restrictions are

imposed on the parameters:

lk = −µk −
1 + 2β

2
γk > −1 ∀ k = 1, · · · , K. (1.18)
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Propositions 4 and 5 show that

f(t, t+ h) = Et[exp(

∫ t+h

t

dmτ ) exp(r(t, t+ h)h)It+h]

and

Ft,t+h = Et[exp(

∫ t+h

t

dmτ ) exp(

∫ t+h

t

rτdτ)It+h].

As the short rate is stochastic, the forward and futures prices are not equal in general. A

sufficient condition for the forward and futures prices to be identical is: zk(0) = 0, ∀ k =

1, · · · , K, i.e., the interest rates are non-stochastic. This is Proposition 3 in Cox, Ingersoll,

and Ross (1981).

1.2.5 European Call and Put Options Written on the Index

The prices of the European options are deduced by applying a transform analysis to function

C(t, t+h, u) computed for pure imaginary argument u [see Duffie, Pan, and Singleton (2000)

and Appendix E].

Proposition 6.

i) The European call prices are given by:

G(t, t+ h,X) = Et{exp(

∫ t+h

t

dmτ )[exp(log It+h)−X]+} (1.19)

=
C(t, t+ h, 1)

2
− 1

π

∫ ∞
0

Im[C(t, t+ h, 1− iv) exp(iv logX)]

v
dv

−X{C(t, t+ h, 0)

2
− 1

π

∫ ∞
0

Im[C(t, t+ h,−iv) exp(iv logX)]

v
dv},

(1.20)

where X is the strike price, h is the time to maturity, i denotes the pure imaginary number,

and Im(·) is the imaginary part of a complex number.

ii) The European put prices are given by:

H(t, t+ h,X) = Et{exp(

∫ t+h

t

dmτ )[X − exp(log It+h)]
+} (1.21)

= −C(t, t+ h, 1)

2
+

1

π

∫ ∞
0

Im[C(t, t+ h, 1 + iv) exp(−iv logX)]

v
dv

+X{C(t, t+ h, 0)

2
− 1

π

∫ ∞
0

Im[C(t, t+ h, iv) exp(−iv logX)]

v
dv}. (1.22)
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Again, the restrictions in (1.12) and (1.16) are imposed2.

2 Parameter Restrictions for a Tradable Index

In Section 1, the pricing formulas are valid for tradable and non-tradable indexes. In this

section, we derive the restrictions implied by the tradability of the underlying index.

When the benchmark index is a self-financed and tradable asset, the pricing formula is

valid for the index itself. In that case, we have an additional condition:

It = Et[exp(

∫ t+h

t

dmτ )It+h] = C(t, t+ h, 1),

such that

C(t, t+ h, 1) = It exp[−hz0(1)−
K∑
k=1

Hk
1 (h, zk(1))xk,t −

K∑
k=1

Hk
2 (h, zk(1))], (2.1)

where zk(·) is defined in Equation (1.9), and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation (1.4).

zk(1) > −1 is imposed, ∀ k = 1, · · · , K.

This additional pricing condition has to be satisfied in any environment. This implies a

continuum number of restrictions. However, due to the linearity of these restrictions, they

can be reduced to a finite number of restrictions, so we do not need to use the advanced

GMM method found in Carrasco, Chernov, Florens, and Ghysels (2000). If we consider the

expression C(t, t + h, 1) and identify the different terms in the decomposition, we see that

the dynamic parameters are constrained by: Hk
1 (h, zk(1)) = 0, ∀ k = 1, · · · , K, ∀h,

−hz0(1)−
∑K

k=1H
k
2 (h, zk(1)) = 0, ∀h,

(2.2)

or equivalently by the conditions shown in Proposition 7 (see the proof in Appendix F).

Proposition 7. When the benchmark index is a self-financed and tradable asset, the dynamic

parameters are constrained by:

zk(1) = αk + (β + 1)µk +
γk
2

(β + 1)2 = 0, ∀ k = 0, · · · , K. (2.3)
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These restrictions fix the parameters {αk}, k = 0, · · · , K, and β of the SDF as functions

of the parameters of the index dynamics.

The risk-neutral dynamics of log It is given in Equation (1.6). When the benchmark index

is tradable, the risk-neutral dynamics of log It can also be written as:

d log It = [r(t)− γ0 +
∑
γkxk,t

2
]dt+

√
γ0+

∑
γkxk,tdw

∗
t , (2.4)

or

dIt
It

= r(t)dt+
√
γ0+

∑
γkxk,tdw

∗
t . (2.5)

In other words, if the index is tradable, the no-arbitrage condition requires its risk neutral

drift to be equal to the short rate. Therefore, conditional on the underlying factors, the risk

wt can be hedged by the index and the short rate if the index is tradable. Equivalently, if

the index is tradable, given the underlying factors, the market risk premium associated with

wt is solely determined by the index’s expected return and the short rate.

If the benchmark index is tradable, the formulas of derivative prices can be simplified.

In particular, the forward price derived in Proposition 4 can be simplified to the standard

formula:

f(t, t+ h) =
It

B(t, t+ h)
, (2.6)

and the spot-futures parity will hold for the index and its forward price. Similarly, if the

benchmark index is tradable, the relationship between the prices of European call and put

options can be written as:

G(t, t+ h,X)− It = H(t, t+ h,X)−XC(t, t+ h, 0), (2.7)

which is the standard put-call parity.

3 Tradability Premium

In this framework, we can also measure the “tradability premium”, which is defined as the

difference between the market price of risk implied by the unrestricted model and the market
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price of risk implied by the restricted model in which the underlying asset is assumed to be

self-financed and tradable.

The market price of risk is a key factor in determining derivative prices. When the

underlying asset is tradable, its price should include a tradability premium, which should

be reflected in the market price of risk associated with the underlying asset. When the

underlying asset is not tradable, the market risk premium does not reflect the tradability

premium. The difference between these two market risk premia is the tradability premium.

In other words, if an investor estimates a pricing model assuming that the underlying asset

is tradable when, in fact, it is not, s/he is essentially ignoring the tradability premium. This

practice can lead to significant errors in derivative pricing. In this paper, the market price

of risk associated with wt is −β(γ0 +
∑K

k=1 γkxk,t). By looking at this market risk premium,

which is estimated from the unrestricted model and from the restricted model with derivatives

data, we can estimate the tradability premium. This is illustrated in Section 4.

4 Monte Carlo Simulation and Illustration

In this section, we use the one-factor affine model as an example. We implement a Monte

Carlo study to illustrate how the tradability premium is estimated and how it affects deriva-

tive pricing.

To mirror the empirical estimation in the next section, we simulate the daily (1/252

years) value of the spot index; the prices of two index futures with 30 days and 120 days

until maturity; and the prices of three index call options maturing in 30 days, 90 days, and

250 days with moneyness (S/X) of 1.02, 0.97, and 0.93, respectively. These simulated data

are used to estimate parameters. The sample size is T = 1, 500 and the total number of

simulations is 50. The underlying factor x1,t is simulated based on Equation (1.2) using a

fine discretion scheme (dt = 1
30×252) to ensure that the data are generated from the true

continuous-time model. The spot index value is also simulated using the fine discretion
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scheme based on Equation (1.1), but only the daily log difference of the spot index is used

for estimation purpose. The observed prices of the futures and options are generated by

adding white noise to the true prices computed based on Equations (1.17) and (1.19). The

white noise is assumed to be normally distributed with different variances for the futures

and the options. The parameters to be estimated are µ0, µ1, γ0, γ1, ξ1, ζ1, α0, α1, and β.

We use θ to denote the vector of all the parameters. As explained in the next section, ν1

is normalized to 1. The true values of the parameters are assumed to be θ∗=(0.015, -0.02,

0.005, 0.09, 3, 0.1, 0.28, 0.12, -0.42), which are close to the empirical estimates in Section 6.

The model is estimated using the maximum likelihood estimation (MLE) method.

The first part of Table 1 reports the mean and standard deviation of the parameter

estimates across 50 simulations. The second and third columns present the estimation results

for the unrestricted model, while the last two columns present the results for the restricted

model when the tradability restrictions in Equation (2.3) are imposed. As the observed

prices are generated without imposing the tradability restrictions in Equation (2.3), we are

not surprised to see that the parameter estimates in the unrestricted model are very close

to the true values and show small standard deviations, while the parameter estimates in the

restricted model are quite different from their true values. Therefore, if an investor incorrectly

imposes the tradability restriction on the prices of derivatives for which the underlying asset

is not actually tradable, the results of the estimation will be biased and inconsistent.

The second part of Table 1 reports the mean and standard deviation of the daily average

in-sample pricing errors across 50 simulations. The pricing errors are measured as the absolute

difference between the model-implied prices using the estimated parameters and the observed

prices as a percentage of the observed prices. As the error terms are assumed to be normally

distributed, the sum of the squared residuals between the observed prices and the model-

implied prices are minimized in the MLE estimation. As a result, the in-sample pricing errors

in both the unrestricted model and the restricted model are quite small, although the pricing
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errors in the restricted model are slightly higher for the options.

The market price of risk is crucial in derivative pricing. The tradability premium is

measured as the difference between the market risk premium computed with parameters

estimated from the unrestricted model and the market risk premium computed with param-

eters estimated from the restricted model. In other words, the tradability premium is the

difference between the “right” market price of risk and the “wrong” market price of risk. In

this paper, the market risk premium associated with wt is −β(γ0 +
∑K

k=1 γkxk,t). Therefore,

the tradability premium is a stochastic process. Figure 1 shows two samples. As shown in the

figure, the tradability premium is significantly different from zero. On average, the tradabil-

ity premium is 40 percent of the market price of risk in the unrestricted model. This implies

that the tradability premium is very important in determining the prices of the derivatives.

To demonstrate the impact of the tradability premium on derivative pricing, we also

simulated the daily prices of call options with various times to maturity (i.e., 15 days, 60

days, 100 days, 160 days, 240 days, and 320 days) and different levels of moneyness (i.e.,

0.85, 0.92, 0.96, 0.99, 1.02, 1.05). Table 2 presents the out-of-sample option-pricing errors.

Here, the pricing errors are measured as the absolute difference between the model-implied

prices using the estimated parameters and the true prices as a percentage of the true prices.

The options are divided into 36 groups based on maturity and moneyness. For each group,

we compute the daily pricing errors with parameters estimated in the unrestricted model and

in the restricted model when the tradability restrictions in Equation (2.3) are imposed. We

report the mean and standard deviation of daily average pricing errors across 50 simulations.

As shown in the table, the out-of-sample pricing errors with parameters estimated in the

unrestricted model are very small and most of the them are not significantly different from

zero. This is not surprising because the parameter estimates from the unrestricted model are

close to the true values. On the other hand, the out-of-sample pricing errors with parameters

estimated in the restricted model are quite large and are all significantly different from zero.
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The largest pricing error (55.95 percent) occurs for options with a time to maturity of 100

days and moneyness of 0.85. The smallest pricing error (0.38 percent) occurs for options

with a time to maturity of 160 days and moneyness of 0.96. Roughly speaking, the pricing

errors tend to be larger for call options with low levels of moneyess (out-of-the-money) and

long maturities.

The Monte Carlo simulation illustrates the importance of tradability in derivative pric-

ing. In practice, a failure to recognize the non-tradability of the underlying asset and the

tradability premium can cause significant pricing errors.

5 Estimation Method and Testing Procedure

In this section, we empirically check whether the tradability restrictions in Equation (2.3)

are satisfied by the S&P 500 Index and its derivatives. If they are satisfied, then the market

prices the derivatives written on the index as if the index were self-financed and tradable.

To test the restrictions, we need an estimator of zk(1) for all k = 0, · · · , K. This can be

obtained by combining the spot, futures, and options data3. The pricing model in Section 1

can be estimated using the Unscented Kalman Filter (UKF) method found in Wan and Van

Der Merwe (2000).

Equation (1.3) shows that we cannot identify ςk, ν
2
k , and z separately. Only ςk

ν2k
and zν2k

can be identified. Equation (1.8) also shows that we can only identify µkν
2
k , γkν

2
k , αkν

2
k from

the pricing formulae. Therefore, in line with Dai and Singleton (2000), we normalize the

model by setting νk = 1 for k = 1, · · · , K.

As the underlying factors {xk,t} are not observable, we transform the model into a dy-

namic state-space form and estimate it using a filtering method. The state equations and

measurement equations are specified as follows.

Equation (1.2) is discretized daily (1/252 years) to generate the state equation for all

factors. We consider one, two, and three factors, respectively. We use daily data from the
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spot index, two index futures, and three index options to estimate the model. Therefore,

we have six measurement equations. Equation (1.1) is discretized daily to generate the first

measurement equation for the spot index. The annualized log of futures spot ratio (ALFSR) is

defined as4 1
h

log
Ft,t+h

It
, where Ft,t+h is given by Equation (1.17). The measurement equations

for the futures are generated by adding an error term to the ALFSR. The call-options price in

Equation (1.19) is normalized by dividing the corresponding Black-Scholes vega5, which we

denote as the option price-vega ratio (OPVR). The measurement equations for the options

are generated by adding an error term to the OPVR. All of the error terms for the futures

and options are assumed to be independently and normally distributed with a mean of 0 and

a variance of σ2
i , i = 1, · · · , 5. The parameters to be estimated are µk, γk, αk, k = 0, · · · , K,

ξk, ζk, k = 1, · · · , K, β and σ2
i , i = 1, · · · , 5. We use θ to denote the vector of all of the

parameters. The total number of parameters is 5K + 9, where K is the number of latent

factors.

The above state-space model is Gaussian but nonlinear. We therefore implement the Un-

scented Kalman Filter (UKF) method found in Wan and Van Der Merwe (2000), which

linearizes the model and removes the need to explicitly calculate Jacobians or Hessians

without sacrificing accuracy. As all of the error terms are assumed to be normally dis-

tributed in the state-space model, the log likelihood function of the observed variables

yt = [d log It, ALFSR1, ALFSR2, OPV R1, OPV R2, OPV R3]
′ is given by:

logLt(θ) = −6

2
ln2π − 1

2
ln|P−yt | −

1

2
(yt − ŷ−t )′(P−yt )

−1(yt − ŷ−t ), (5.1)

where ŷ−t is the predicted value of yt based on earlier observations and P−yt is the predicted

covariance matrix. The maximum likelihood estimator is obtained as:

θ̂ = argmaxθ

T∑
t=1

logLt(θ), (5.2)

where T is the number of days in the dataset. Under standard regularity conditions, these

estimators are asymptotically normal.
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The “sandwich” formula is used to estimate the covariance of the quasi-maximum likeli-

hood estimator (see White (1982) and Gourieroux, Monfort, and Trognon (1984)) in order

to take account of the possibility that the model is misspecified:

Σ̂θ̂ =
1

T
I(θ̂)−1J(θ̂)I(θ̂)−1 (5.3)

where

I(θ̂) = − 1

T

T∑
t=1

∂2 logLt(θ̂)

∂θ∂θ′
and J(θ̂) =

1

T

T∑
t=1

∂ logLt(θ̂)

∂θ

∂ logLt(θ̂)

∂θ′
.

We deduce that the estimated functions of the parameters characterizing the restrictions

for index tradability

ẑk(1) = α̂k + (β̂ + 1)µ̂k +
γ̂k
2

(β̂ + 1)2, ∀ k = 0, · · · , K.

are also asymptotically normal with an estimated variance-covariance matrix Ω̂, which is

computed using the δ method.

A Wald test statistic of the null hypothesis that the derivatives are priced as if the index

were self-financed and tradable is:

ξw = ẑ(1)′Ω̂−1ẑ(1). (5.4)

Under the null hypothesis, this statistic asymptotically follows a chi-square distribution with

K + 1 degrees of freedom.

6 Empirical Results

In this section, we present the empirical results. Subsection 6.1 introduces the data. The

model is estimated using the quasi-maximum likelihood estimation method discussed in Sec-

tion 5. We analyze the estimation and testing results for the unrestricted model in Subsection

6.2, and those for the restricted model in Subsection 6.3. Subsection 6.4 presents the esti-

mated tradability premium, while Subsection 6.5 investigates the robustness of the empirical

results.
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6.1 Description of Data

In order to identify all of the parameters in the model, we combine the data for the S&P 500

index, index futures, and index options in the estimation. These data were obtained from

Optionmetrics. The spot index and the futures are only used for estimation, while the options

data are divided into two parts: one for estimation and the other for the out-of-sample test.

The dataset covers the period from January 3, 2001, to December 29, 2006. There are

a total of 1,506 days. The summary statistics are presented in Table 3 and the plots of the

in-sample observations are shown in Figure 2.

The index level is computed using the last transaction prices of the component stocks. As

seen in Table 3 and Figure 2, the average daily change in the S&P 500 Index is very small,

while its standard deviation is relatively larger. The variable dlogIt is positively skewed and

has a fatter tail than the normal distribution.

The S&P 500 futures contracts traded on the Chicago Mercantile Exchange (CME) are

among the most actively traded financial derivatives in the world. Each day, there are eight

futures contracts with different maturity dates. The maturity dates are the third Friday

of the eight months in the following March’s quarterly cycle (March, June, September, and

December). The futures contracts are ranked by their maturities, and we selected two futures

for estimation each day. The first futures (Fu1) have the shortest maturity. However, in the

March cycle months and before the maturity date, the futures with the second-shortest

maturity are used. The second futures (Fu2) expire a quarter later than Fu1. Fu1 has times

to maturity ranging from 15 to 112 days, while the maturities of Fu2 range from 105 to

204 days. These two futures usually have the highest trading volumes with open interest6

greater than 1,700 contracts. The futures prices are quoted in terms of index points, and the

contract size is 250 times CME S&P 500 futures price. The prices vary considerably during

our sample period. The ALFSR, which is equal to 1
h

log
Ft,t+h

It
, is more stable as shown in

Figure 2. The ALFSR for the first futures has a mean of 0.009 and standard deviation of
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0.018, while the ALFSR for the second futures has a mean of 0.011 and standard deviation

of 0.015.

The S&P 500 Index options traded on the Chicago Board Options Exchange (CBOE)

are European options. They are among the most liquid exchange-traded options and are

extensively used for testing option-pricing models. The exchange-traded S&P 500 Index

options differ from over-the-counter options and have deterministic issuing dates, maturity

dates, and strikes to enhance liquidity. The expiration months are the three near-term months

followed by three additional months from the March quarterly cycle, plus two additional

months from June and December. The expiration date is the Saturday following the third

Friday of the expiration month. The underlying asset is the index level multiplied by 100.

Strike price intervals are 5 points and 25 points for long-term contracts.

In this paper, the options data are filtered as follows. First, only call options are included.

Second, to alleviate the liquidity concern, we only consider call options with open interest

greater than 100, trading volume greater than 0, maturity between 7 and 540 days, and

moneyness (defined as the underlying price divided by the strike price, i.e., I/X) between

0.85 and 1.06. Third, to mitigate the market-microstructure problem, we eliminate options

with best bid prices of less than 3/8 dollars. The filtered dataset contains 1,506 days, 77,224

options, and an average of 51 observations per day. A similar filtering approach is used in

Li (2012). For each day, we select three call options for estimation and the rest are used

for the out-of-sample test. We try to use a variety of options with distinct moneyness and

times to maturity in the estimation. We categorize three sets of options. Options in the

first set have times to maturity of less than 60 days and moneyness between 0.97 and 1.03.

These at-the-money, short time-to-maturity (ATM-SM) options are among the most liquid

products in the market. Options with medium and long maturity are generally more liquid

when they are out-of-the-money. Therefore, options in the second set (OTM-MM) have times

to maturity between 60 to 180 days and moneyness of less than 1, and options in the third
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set (OTM-LM) has times to maturity of more than 180 days and moneyness of less than

1. For estimation purposes, we choose the option with the highest trading volume each day

from each set.

Figure 2 shows that the price-vega ratio for the options is high when the underlying index

is volatile and low when the index is relatively stable. Options used for the out-of-sample

test have a wide range of times to maturity and moneyness, as shown in Table 3. The time

to maturity varies from 10 days to 540 days, while the moneyness ranges from 0.85 to 1.06.

6.2 Estimation Results for the Unrestricted Model

Table 4 summarizes the estimation and testing results for the one-, two-, and three-factor

models. The table presents the parameter estimates and the standard deviations. The

maximized log likelihood for each model and the test statistics ξw for the null hypothesis of

a tradable index computed in equation (5.4) are presented at the end of the table.

In Table 4, we see that the standard errors of the parameter estimates in the one-factor

and two-factor models are high. As a result, the estimates for most parameters in θ are

not statistically significant. The positive estimates for ξ1 and ξ2 imply that the underlying

factors are mean reverting and not very persistent. The high Wald test statistic, ξw, suggests

that the null hypothesis that the derivatives are priced as if the index were self-financed and

tradable is strongly rejected in the one-factor and two-factor models.

For the three-factor model, the estimates for most parameters become statistically signif-

icant, which means that a third CIR factor process is required. The estimates of 2.23, 2.23,

and 1.72 for ξ1, ξ2, and ξ3, respectively, imply that the underlying factors are mean reverting

with mean half lives of 0.31, 0.31, and 0.40 years, respectively. All of the factors in this

model have higher autocorrelations than in the one-factor and two-factor models, although

the third factor has a longer run effect than the first two factors. This suggests that the

three-factor model will do better in forecasting the price of derivatives with long maturities,
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which is indeed the case when we look at derivative-pricing errors. The market price of risk

associated with wt is −β(γ0 +
∑K

k=1 γkxk,t)
1/2. All γ estimates are positive, and the estimate

of -5.66 for β implies a positive market risk premium. The Wald test statistic, ξw, is equal

to 18,232. Therefore, the null hypothesis that the derivatives are priced as if the index were

self-financed and tradable is strongly rejected in the three-factor model despite the rather

low forecasting error on It. In other words, significant mispricing of options and futures

would appear if the three-factor model were estimated with the parameters constrained by

the tradable restrictions (2.3), as is usually done in the literature.

The likelihood-ratio test of the one-factor model against the two-factor model using the

estimated log likelihood rejects the one-factor model. Similarly, the two-factor model is

rejected against the three-factor model.

Table 5 reports the in-sample pricing (forecasting) errors for the three models. The

pricing error is measured as the absolute difference between the model-implied price and the

observed price as a percentage of the observed price. For the index that is not tradable, the

interpretation is in terms of forecasting error. For the index, we report the log index value,

while the actual prices are examined for the futures and options. There are 1,506 days in

the data. The in-sample pricing (forecasting) errors for spot index and index futures in all

three models are very low due to the linearity of the pricing functions. In general, the pricing

errors are higher for the options, although all of the mean values are less than 10%.

Table 6 reports the out-of-sample option-pricing errors for the three models. There are

1,506 days and 72,706 out-of-sample observations in total. The options are divided into 15

groups based on maturity and moneyness. The means of the absolute percentage of option-

pricing errors for each group are reported. As shown in the table, all three models do poorly

in estimating the deep out-of-the-money options, especially those with short-term maturities.

However, the models produce more accurate estimates for the other options, and the pricing

errors for these options are fairly low. The two- and three-factor models perform better than
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the one-factor model in forecasting the prices of the medium- and long-term derivatives. The

three-factor model yields the smallest mean absolute percentage pricing errors for options

with long maturities, and the average pricing error is around 5 percent.

6.3 Estimation Results for the Restricted Model

In Subsection 6.2, we only looked at the unrestricted versions of the factor models and

rejected the tradability restriction in Equation (2.3). To check the economic significance of

our empirical results, we now present the estimation and test results for the restricted model

in which the underlying asset is assumed to be self-financed and tradable. In other words,

we now impose the tradability restrictions in Equation (2.3).

The last row of Table 4 reports the log likelihoods of the restricted models. They are all

clearly rejected against the unrestricted models.

Tables 7 and 8 report the in-sample and out-of-sample pricing (forecasting) errors for the

restricted versions of the three models. Due to the linearity of the pricing functions, the

in-sample pricing (forecasting) errors for spot index and index futures are very low and not

much different from the pricing errors of the unrestricted model. However, for the options,

the restricted model yields much higher pricing errors than the unrestricted model. For the

in-sample pricing-error estimates, the difference averages 4 percent. For the out-of-sample

forecast, the difference is even greater. These comparisons are confirmed in Tables 9 and 10,

in which we report the absolute difference of the in-sample and out-of-sample pricing errors

between the unrestricted and the restricted models, respectively. In comparing the sample

mean of the absolute difference with the standard error of the sample mean, we see that the

restricted model generates significantly worse results than the unrestricted model. Therefore,

the tradability of the underlying asset must be taken into account in derivative pricing.
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6.4 Estimation of the Tradability Premium

Given the estimates of the parameters and the filtered factors in each factor model, we

can look at the market risk premium estimated from the unrestricted model and from the

restricted model, and estimate the tradability premium for each day.

The daily tradability premium is plotted in Figure 3. The sample mean of the premium

and the standard error of the sample mean are also reported for each model. For the two-

factor model, the tradability premium is approximately zero for some days, while it can be

positive or negative for other days. For the one-factor and three-factor models, the tradability

premium is quite different from zero and always remains positive during the sample period.

The sample means of the daily premium are 130 basis points and 831 basis points, respectively.

Therefore, the effect of tradability on derivative pricing cannot be ignored. Moreover, the

tradability premium tends to be high and volatile when the daily change in the underlying

index is high and volatile. This suggests that when the financial market is volatile, it is

even more imperative for investors to have the tradable underlying asset to hedge the risk

associated with it. In summary, the tradability of the underlying asset is important for

derivative pricing.

6.5 Robustness Analysis and Caveats

Our empirical results strongly reject the tradability restrictions in Equation (2.3). However,

as this is not a model-free test, we need to address the issue of possible model misspecification.

In Equation (1.5), we propose a simple specification of SDF, which implicitly assumes that

the market prices of the risk factors {wk,t}, k = 1, · · · , K are 0, and only the risk associated

with wt is corrected. We intend to use this parsimonious specification to emphasize the point

that, conditional on the underlying factors, whether the index is tradable or not will solely

affect the market risk premium associated with wt. If the index is tradable, the market risk

premium is determined by the price of the underlying asset and the short rate. If the index
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is not tradable, the value of the index does not provide enough information on the market

risk premium. To check whether a more flexible specification of SDF will change our main

conclusion, we consider a standard specification of SDF used in affine models (see, e.g., Duffie,

Pan, and Singleton (2000)). In this specification, the SDF is assumed to be an exponential

affine function of all of the risk factors:

Mt,t+dt = exp(dmt) = exp(α0dt+
K∑
k=1

αkdxk,t + βd log It).

With this more general specification, it is not surprising that the models produce lower pricing

errors. However, we still strongly reject the null hypothesis that the derivatives are priced

as if the index were self-financed and tradable in all three factor models. Therefore, we keep

the simple model for ease of illustration.

The derivative-pricing literature recognizes that we need a distribution with a fatter tail

and more negative skewness than the Black-Scholes model to more accurately calibrate option

prices. A popular method of generating a distribution with these properties is to introduce

stochastic volatility to account for the fat tail in the long run, a negative correlation between

stochastic volatility and asset return to account for the negative skewness (“leverage effect”),

and a negative or asymmetric jump (with stochastic jump intensity) to generate high kurtosis

and negative asymmetry in the short run. The model in this paper only introduces stochastic

volatility, while it lacks the other necessary features. Ideally, we should extend the model

to cover all requisite complications, compute derivative prices, estimate all of the dynamics

jointly, and derive the corresponding tradability constraints. However, this task is beyond the

current computing capabilities. Moreover, a complicated model would deny the possibility

of deriving simple analytical tradability restrictions, such as those in Equation (2.3), which

can be tested empirically. We choose the simple model specification to demonstrate the

importance of tradability in derivatives pricing. The possible misspecification of our simple

model could explain some of the option-pricing errors presented above, especially the large

out-of-sample pricing errors for the short-term out-of-the-money options. Therefore, the
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empirical results in this section should be approached with some caution. In addition, the

tradability premium plotted in Figure 3 could partially reflect the model misspecification.

However, as we have seen in the Monte Carlo simulation in Section 4, the tradability premium

is not simply a result of model misspecification. It is an important factor that should be taken

into account in derivative pricing.

7 Conclusion

In this paper, we consider a coherent multi-factor affine model for pricing various derivatives,

such as forwards, futures, and European options, written on the non-tradable S&P 500 Index.

We consider cases in which the underlying index is self-financed and tradable, and cases

in which it is not, and we show the difference between the two pricing models. When the

underlying asset is self-financed and tradable, an additional arbitrage condition must be

introduced, which implies additional parameter restrictions. These restrictions can be tested

in practice to check whether the derivatives are priced as if the underlying index were self-

financed and tradable.

More importantly, we are able to define and compute the “tradability premium” in this

framework and show the impact of the tradability of the underlying asset on derivative

pricing. In the Monte Carlo simulation study, we illustrate that whether the underlying

asset is tradable makes a nontrivial difference and that ignoring the tradability premium

could cause significant mispricing of the derivatives.

To empirically test the restrictions, we consider three nested factor models. The models

are estimated by combining the spot, futures, and options data, and using the Unscented

Kalman Filter (UKF) method. The Wald tests strongly reject the null hypothesis that the

derivatives are priced as if the index were self-financed and tradable in all three models.

The robustness test shows that the unrestricted model performs significantly better than the

restricted model in which the underlying asset is constrained to be self-financed and tradable.

29



The daily tradability premium of the S&P 500 Index is clearly different from zero during our

sample period. In other words, a tradability premium exists in the price of the tradable

asset and the tradability of the index is an important factor in derivative pricing. Moreover,

significant mispricing of options and futures contracts would be observed if the factor models

were estimated with parameters constrained by the index tradability restriction, as is usually

done in the literature. In addition, it is impossible to reproduce the index by means of a

self-financed mimicking portfolio without significant errors.

The S&P 500 Index is not the only non-tradable index on which derivatives are written.

Our model can easily be extended to price derivatives written on other non-tradable indices,

such as a retail price index, a meteorological index, an index summarizing the results of a set of

insurance companies, a population mortality index, or the VIX. These other applications are

even more appealling as no liquid mimicking portfolio for these indices is generally proposed

on the market.
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Appendices: Proofs of Propositions

A Proof of Proposition 1

The price of the call option is:

C(t, t+ h, u)

=Et[exp(

∫ t+h

t

dmτ + u log It+h)]

=Et{exp[

∫ t+h

t

dmτ + u(log It +

∫ t+h

t

d log Iτ )]}

= exp(u log It)Et{exp

∫ t+h

t

([α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,τ ]dτ

+ β(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ + u[(µ0 +

K∑
k=1

µkxk,τ )dτ + (γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ])}

= exp(u log It)Et{exp

∫ t+h

t

([α0 + (β + u)µ0 +
K∑
k=1

(αk + (β + u)µk)xk,τ ]dτ

+ (β + u)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ )}

= exp(u log It)Et{exp

∫ t+h

t

[α0 + (β + u)µ0 +
K∑
k=1

(αk + (β + u)µk)xk,τ ]dτ

× Et(exp[(β + u)

∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ] | Xk,τ )},

whereXk,τ denotes the set {xk,τ}k=1···K
τ=t···t+h.

As exp[(β + u)

∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ ] | Xk,τ

∼ LN(0, (β + u)2
∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )dτ),

we deduce that:

C(t, t+ h, u)

= exp(u log It)Et{exp

∫ t+h

t

[α0 + (β + u)µ0 +
K∑
k=1

(αk + (β + u)µk)xk,τ ]dτ
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× exp[
(β + u)2

2

∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )dτ ]}

= exp(u log It) exp

∫ t+h

t

[α0 + (β + u)µ0 +
(β + u)2

2
γ0]dτ

× Et{exp

∫ t+h

t

K∑
k=1

[(αk + (β + u)µk +
(β + u)2

2
γk)xk,τ ]dτ}

= exp(u log It) exp{h[α0 + (β + u)µ0 +
(β + u)2

2
γ0]}

×
K∏
k=1

Et{exp−
∫ t+h

t

−[αk + (β + u)µk +
(β + u)2

2
γk]xk,τdτ},

as factors {xk,t}, k = 1, · · · , Kare independent,

= exp(u log It) exp{h[α0 + (β + u)µ0 +
γ0
2

(β + u)2]

−
K∑
k=1

Hk
1 (h, zk(u))xk,t −

K∑
k=1

Hk
2 (h, zk(u))},

where

zk(u) = −αk − (β + u)µk −
γk
2

(β + u)2,

and Hk
1 (·, ·) and Hk

2 (·, ·) are given in equation (1.4)

B Proof of Proposition 3

The instantaneous interest rate is defined by:

r(t) = lim
h→0
−1

h
logB(t, t+ h) =

d[− logB(t, t+ h)]

dh
|h=0 .

We have:

− logB(t, t+ h) = −h(α0 + βµ0 +
γ0
2
β2) +

K∑
k=1

Hk
1 (h, zk(0))xk,t +

K∑
k=1

Hk
2 (h, zk(0)).

We deduce that:

d[− logB(t, t+ h)]

dh
= −α0 − βµ0 −

γ0
2
β2 +

K∑
k=1

dHk
1 (h, zk(0))

dh
xk,t +

K∑
k=1

dHk
2 (h, zk(0))

dh
,

where
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Hk
1 (h, zk(0)) =

2zk(0)(exp[εk(zk(0))h]− 1)

(εk(zk(0)) + ξk)(exp[εk(zk(0))h]− 1) + 2εk(zk(0))
,

Hk
2 (h, zk(0)) =

−2ξkζk
ν2k

{log[2εk(zk(0))] +
h

2
[εk(zk(0)) + ξk]

− log[(εk(zk(0)) + ξk)(exp[εk(zk(0))h]− 1) + 2εk(zk(0))]}.

It is straightforward to show that:

dHk
1 (h, zk(0))

dh
|h=0= zk(0), and

dHk
2 (h, zk(0))

dh
|h=0= 0.

We deduce:

r(t) = −α0 − βµ0 −
γ0
2
β2 +

K∑
k=1

zk(0)xk,t.

C Proof of Proposition 4

As

E[exp(

∫ t+h

t

dmτ )(f(t, t+ h)− It+h)] = 0,

we get:

B(t, t+ h)f(t, t+ h) = E[exp(

∫ t+h

t

dmτ )It+h],

and

f(t, t+ h) =
C(t, t+ h, 1)

C(t, t+ h, 0)
.

D Proof of Proposition 5

As Et[

∫ t+h

t

(exp

∫ t+τ

t

dms)dFτ ] = 0, we get:

Ft,t+h

=Et[exp(

∫ t+h

t

dmτ ) exp(

∫ t+h

t

rτdτ)It+h]

=ItEt[exp(

∫ t+h

t

(dmτ + rτdτ + d log Iτ )]
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=ItEt{exp

∫ t+h

t

[(α0 + βµ0 +
K∑
k=1

(αk + βµk)xk,τ )dτ

+ β(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ + (µ0 +

K∑
k=1

µkxk,τ )dτ

+ (γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ + (−α0 − βµ0 −

γ0
2
β2 +

K∑
k=1

zk(0)xk,τ )dτ ]}

=It exp[h(µ0 −
γ0
2
β2)]Et{exp

∫ t+h

t

K∑
k=1

(αk + (β + 1)µk + zk(0))xk,τdτ

× Et[exp

∫ t+h

t

(β + 1)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ | Xk,τ ]}.

As exp

∫ t+h

t

(β + 1)(γ0 +
K∑
k=1

γkxk,τ )
1/2dwτ | Xk,τ

∼ LN(0, (β + 1)2
∫ t+h

t

(γ0 +
K∑
k=1

γkxk,τ )dτ),

we get:

Ft,t+h

=It exp[h(µ0 −
γ0
2
β2)]

× Et{exp

∫ t+h

t

[
K∑
k=1

(αk + (β + 1)µk + zk(0))xk,τdτ +
(β + 1)2

2
(γ0 +

K∑
k=1

γkxk,τ )dτ ]}

=It exp[h(µ0 −
γ0
2
β2 +

(β + 1)2

2
γ0)]

×
K∏
k=1

Et{exp−
∫ t+h

t

−[αk + (β + 1)µk + zk(0) +
(β + 1)2

2
γk]xk,τdτ}

=It exp[h(µ0 +
1 + 2β

2
γ0)−

K∑
k=1

Hk
1 (h, lk)xk,t −

K∑
k=1

Hk
2 (h, lk)],

where:

lk = −αk − (β + 1)µk − zk(0)− γk
2

(β + 1)2

= −µk −
1 + 2β

2
γk.
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E Proof of Proposition 6

Let us first consider the call option with price G(t, t+ h,X). Its price is given by:

G(t, t+ h,X)

= Et{exp(

∫ t+h

t

dmτ )[exp(log It+h)−X]+}

= Et{exp(

∫ t+h

t

dmτ )[exp(log It+h)−X]1− log It+h≤− logX}

= A1,−1(− logX;x1,t, · · · , xK,t, log It, h)−XA0,−1(− logX;x1,t, · · · , xK,t, log It, h),

whereAa,b(y;x1,t, · · · , xK,t, log It, h) = Et[exp(

∫ t+h

t

dmτ ) exp(a log It+h)1b log It+h≤y].

The Fourier-Stieltjes transform of Aa,b(y;x1,t, · · · , xK,t, log It, h) is:∫
<

exp(ivy)dAa,b(y;x1,t, · · · , xK,t, log It, h)

= Et{exp(

∫ t+h

t

dmτ ) exp[(a+ ivb) log It+h]} = C(t, t+ h, a+ ivb).

We deduce that:

Aa,b(y;x1,t, · · · , xK,t, log It, h)

=
C(t, t+ h, a)

2
− 1

π

∫ ∞
0

Im[C(t, t+ h, a+ ivb) exp(−ivy)]

v
dv

[see Duffie, Pan, and Singleton (2000), p.1352].

By substitution, we get the call price:

G(t, t+ h,X) =
C(t, t+ h, 1)

2
− 1

π

∫ ∞
0

Im[C(t, t+ h, 1− iv) exp(iv logX)]

v
dv

−X{C(t, t+ h, 0)

2
− 1

π

∫ ∞
0

Im[C(t, t+ h,−iv) exp(iv logX)]

v
dv}.

Similarly, for the put option with price H(t, t+ h,X), we have:

H(t, t+ h,X)

= Et{exp(

∫ t+h

t

dmτ )[X − exp(log It+h)]
+}
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= Et{exp(

∫ t+h

t

dmτ )[X − exp(log It+h)]1 log It+h≤logX}

= −A1,1(logX;x1,t, · · · , xK,t, log It, h) +XA0,1(logX;x1,t, · · · , xK,t, log It, h)

= −C(t, t+ h, 1)

2
+

1

π

∫ ∞
0

Im[C(t, t+ h, 1 + iv) exp(−iv logX)]

v
dv

+X{C(t, t+ h, 0)

2
− 1

π

∫ ∞
0

Im[C(t, t+ h, iv) exp(−iv logX)]

v
dv}.

F Proof of Proposition 7

The first restriction in Equation (2.2) holds if, and only if:

zk(1) = −αk − (β + 1)µk −
γk
2

(β + 1)2 = 0, ∀k = 1, · · · , K.

This implies εk(zk(1)) =|ξk |, ∀k = 1, · · · , K, and

Hk
2 (h, zk(1)) =

−2ξkζk
ν2k

{log|2ξk |+
h

2
(|ξk |+ξk)− log[(|ξk |+ξk)(exp(|ξk |h)− 1) + 2 |ξk |]}

= 0, regardless of whether ξk > 0 or ξk < 0, ∀k = 1, · · · , K.

This, together with the second restriction in Equation (2.2), implies that:

α0 + (β + 1)µ0 +
γ0
2

(β1)
2 = 0.

Therefore, Equation (2.2) is equivalent to:

αk + (β + 1)µk +
γk
2

(β1)
2 = 0, ∀k = 0, · · · , K.
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Table 1: Estimation in the Simulation

The first part of this table reports the mean and standard deviation of the parameter esti-

mates across 50 simulations in Section 4. The model is normalized by setting ν1 = 1. It is

estimated using the simulated data of the underlying asset, two futures, and three call op-

tions using the maximum likelihood estimation (MLE) method. The first column reports the

parameters of the one-factor model and their true values as assumed in the simulation. The

second and third columns present the estimation results for the unrestricted model, and the

last two columns present the results for the restricted model when the tradability restrictions

in Equation (2.3) are imposed. The second part of this table reports the mean and standard

deviation of the in-sample pricing errors. The pricing errors are measured as the absolute

difference between the model-implied prices using the estimated parameters and the observed

prices as a percentage of the observed prices.

Unrestricted Model Restricted Model

Parameter (true value) Estimate Std.Dev. Estimate Std.Dev.

µ0(0.015) 0.014975 0.000153 0.014649 0.001045

µ1(−0.02) -0.020457 0.002801 -0.022989 0.016267

γ0(0.005) 0.004995 0.000057 0.005347 0.000161

γ1(0.09) 0.090017 0.000653 0.084409 0.002632

ξ1(3) 2.996987 0.090782 1.230851 0.101356

ζ1(0.1) 0.100085 0.002416 0.292409 0.026611

α0(0.28) 0.280841 0.009660 -0.010594 0.002842

α1(0.12) 0.114479 0.061099 -0.001384 0.005172

β(−0.42) -0.414964 0.030824 -0.347832 0.193869

In-Sample Pricing Errors Mean Std.Dev. Mean Std.Dev.

d log It 0.0008 0.0001 0.0008 0.0001

Fu1(τ = 30 days) 0.0001 0.0000 0.0001 0.0000

Fu2(τ = 120 days) 0.0004 0.0000 0.0004 0.0000

Op1(τ = 30 days, S/X = 1.02) 0.0211 0.0038 0.0266 0.0027

Op2(τ = 90 days, S/X = 0.97) 0.0358 0.007 0.0436 0.0061

Op3(τ = 250 days, S/X = 0.93) 0.0202 0.0038 0.0206 0.0037
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Table 3: Summary Statistics for the Data

This table summarizes statistics for the daily data ranging from January 3, 2001, to December

29, 2006. It covers the spot S&P 500 Index (SPX), the two index futures (Fu1 and Fu2),

and the three index options (Op1 to Op3) used for estimation, and the options used for the

out-of-sample test. The daily log difference of the S&P 500 Index is reported in the first

row. For the futures, statistics for time-to-maturity (T2M), the annualized log of futures

spot ratio (ALFSR), and the total number of outstanding futures contracts (open interest)

are presented. Fu1 refers to the short-term futures with the shortest maturity and Fu2 refers

to the medium-term futures expiring a quarter later than Fu1. For the options, statistics for

time-to-maturity (T2M), moneyness, the price-vega ratio, trading volume, and open interest

are shown. Op1 represents at-the-money options with short maturity (ATM-SM). Op2 stands

for out-of-the-money options with medium maturity (OTM-MM), and Op3 represents out-of-

the-money options with long maturity (OTM-LM). The last panel summarizes the out-of-the

sample options.

Variable Mean Std.Dev. Skewness Kurtosis Min. Median Max.

In Sample

dlogSPX 0.000 0.011 0.161 5.844 -0.050 0.000 0.056

In Sample

Fu1 T2M (years) 0.172 0.0721 0.0142 1.817 0.041 0.173 0.307

Fu1 ALFSR 0.009 0.018 0.474 3.910 -0.051 0.005 0.105

Fu1 Open Int 520,907 128,143 -1.520 4.905 71,345 564,230 669,216

In Sample

Fu2 T2M (years) 0.423 0.072 0.017 1.820 0.288 0.425 0.559

Fu2 ALFSR 0.011 0.015 0.481 2.218 -0.022 0.008 0.058

(continued on next page)
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Table 3: (continued)

Variable Mean Std.Dev. Skewness Kurtosis Min. Median Max.

Fu2 Open Int 85,164 140,107 2.440 8.105 1,744 25,647 665,176

In Sample

Op1 T2M (years) 0.081 0.034 0.398 2.476 0.027 0.082 0.162

Op1 Moneyness 0.994 0.012 0.149 2.677 0.970 0.995 1.030

Op1 Price/Vega 0.160 0.093 1.173 5.109 0.018 0.143 0.665

Op1 Trading vol 7,467 6,353 2.840 15.921 239 5,853 59,702

Op1 Open int 31,716 27,922 1.696 6.587 143 24,269 191,634

In Sample

Op2 T2M (years) 0.266 0.076 0.675 2.468 0.164 0.244 0.490

Op2 Moneyness 0.959 0.036 -0.812 2.703 0.851 0.968 1.000

Op2 Price/Vega 0.110 0.064 0.811 3.418 0.014 0.104 0.375

Op2 Trading vol 3,963 3,921 3.130 25.210 6 2,700 54,275

Op2 Open int 17,892 16,759 1.546 5.638 100 12,752 94,890

In Sample

Op3 T2M (years) 0.810 0.235 0.875 3.056 0.501 0.753 1.479

Op3 Moneyness 0.931 0.043 -0.046 1.832 0.850 0.930 1.000

Op3 Price/Vega 0.111 0.056 0.557 2.492 0.017 0.103 0.278

Op3 Trading vol 1,627 1,820 3.556 25.661 1 1,050 21,000

Op3 Open int 11,766 10,091.15 1.535 6.421 100 8,925 75,069

(continued on next page)
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Table 3: (continued)

Variable Mean Std.Dev. Skewness Kurtosis Min. Median Max.

Out of Sample

Op T2M 0.295 0.303 1.669 5.235 0.027 0.164 1.479

Op Moneyness 0.972 0.047 -0.422 2.614 0.850 0.977 1.060

Op Price/Vega 0.189 0.642 82.578 9,353 0.013 0.109 90.927

Op Trading vol 811 1,977 20.398 1,232 1 178 157,542

Op Open int 12,856 16,113 3.421 22.919 100 7,722 214,048
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Table 4: Parameter Estimate

This table reports parameter estimates and standard deviations for three nested factor mod-

els. The models are normalized by setting νk = 1, for k = 1, · · · , K. The one-, two- and

three-factor models derived in the paper are estimated using the daily data for the S&P 500

Index, two index futures, and three index options, as described in Section 6. The log likeli-

hood for each model and test statistics ξw computed in equation (5.4) are presented at the

end of the table. The last row of the table reports the log likelihood when the tradability

restrictions in Equation (2.3) are imposed.

Parameter One Factor Two Factors Three Factors

Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

µ0 0.014156 0.062649 0.001751 0.490664 0.020641 0.000306

µ1 -0.019612 1.202200 -0.120038 3.543429 0.326886 0.001813

µ2 - - 0.501187 0.000786 0.241127 0.011074

µ3 - - - - 0.238038 0.000913

γ0 0.005084 0.021024 0.005787 0.060267 0.005612 7.60e-05

γ1 0.091091 0.226156 0.115763 0.453376 0.006901 0.000180

γ2 - - 1.72e-05 1.21e-07 0.003152 5.24e-05

γ3 - - - - 0.067161 0.004048

ξ1 3.364535 6.302816 2.667334 11.54964 2.230514 0.006613

ξ2 - - 3.409025 0.474828 2.230497 0.032053

ξ3 - - - - 1.719731 0.079500

ζ1 0.103510 0.442547 0.052931 0.450232 0.093168 0.000992

ζ2 - - 0.078183 0.000923 0.013873 0.000221

ζ3 - - - - 0.084855 0.002533

(continued on next page)
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Table 4: (continued)

Parameter One Factor Two Factors Three Factors

Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.

α0 0.279563 0.710415 0.351444 0.043135 0.376432 0.017518

α1 0.115896 3.850134 0.356801 6.467518 1.500325 0.013313

α2 - - -0.476146 0.362013 1.181081 0.008354

α3 - - - - 0.059578 0.002488

β -0.421196 12.37646 -1.860492 0.960758 -5.662848 0.415460

σFu1 0.022757 0.001289 0.009532 0.003030 0.009446 0.000655

σFu2 0.017257 0.001578 0.000290 0.065585 0.000790 3.36e-05

σOp1 0.012955 0.006663 0.015889 0.025387 0.016573 0.000553

σOp2 0.010243 0.008514 0.009056 0.066390 0.010097 0.000281

σOp3 0.013427 0.017725 0.010930 0.009359 0.008439 0.000746

Unrestricted

Log likelihood 25,525.29 28,491.26 28,853.48

ξw 845.9943 997.2979 18,231.71

χ2
99%(K + 1) 9.21 11.35 13.28

Restricted

Log likelihood 24,838.73 27,431.55 27,791.21
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Table 5: In-Sample Absolute Percentage Pricing (Forecasting) Errors

This table reports the in-sample pricing errors, which are measured as the absolute difference

between model-implied price and the observed price as a percentage of the observed price.

For the index that is not tradable, the interpretation is in terms of forecasting error. For the

index, we report the log index value, while the actual prices are examined for the futures and

options. Fu1 refers to the short-term futures, and Fu2 refers to the medium-term futures.

Op1 represents at-the-money options with short maturity (ATM-SM). Op2 stands for out-of-

the-money options with medium maturity (OTM-MM), and Op3 represents out-of-the-money

options with long maturity (OTM-LM). There are 1,506 days in the sample.

Securities One Factor Two Factors Three Factors

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

log It 0.001108 0.001086 0.001109 0.001088 0.001112 0.001095

Fu1 0.002400 0.001722 0.001199 0.001045 0.001084 0.001049

Fu2 0.005233 0.003227 4.86e-06 4.70e-06 3.98e-05 4.12e-05

Op1 0.089782 0.164550 0.105236 0.178787 0.107083 0.179544

Op2 0.097314 0.152559 0.082150 0.113209 0.095510 0.128891

Op3 0.104998 0.142086 0.087099 0.109224 0.067479 0.084363
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Table 6: Out-of-Sample Absolute Percentage Option-Pricing Errors

This table reports the out-of-sample option-pricing errors, which are measured as the absolute

difference between the model-implied price and the observed price as a percentage of the

observed price. There are 1,506 days and 72,706 out-of-the-sample observations in total.

The options are divided into 15 groups based on maturity and moneyness. The mean of

absolute percentage option-pricing errors for each group is reported.

Maturity Model Moneyness(I/K)

<0.94 0.94-0.97 0.97-1.00 1.00-1.03 >1.03

<60 days One Factor 0.545435 0.466165 0.154574 0.048615 0.028152

Two Factors 0.529769 0.466957 0.165987 0.044368 0.025586

Three Factors 0.519731 0.436678 0.163203 0.045412 0.028491

60-180 One Factor 0.360111 0.122878 0.061926 0.053554 0.033464

Two Factors 0.329843 0.111317 0.057041 0.046736 0.025826

Three Factors 0.336643 0.106182 0.057058 0.049048 0.033831

>180 One Factor 0.158253 0.076913 0.072129 0.075685 0.087410

Two Factors 0.127078 0.063742 0.054993 0.058140 0.080321

Three Factors 0.109486 0.056811 0.051816 0.054455 0.068869
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Table 7: In-Sample Absolute Percentage Pricing (Forecasting) Errors for the Restricted

Model

This table reports the in-sample pricing errors, which are measured as the absolute difference

between the model-implied price and the observed price as a percentage of the observed price,

when the tradability restrictions in Equation (2.3) are imposed. For the index that is not

tradable, the interpretation is in terms of forecasting error. For the index, we report the

log index value, while the actual prices are examined for the futures and options. Fu1 refers

to the short-term futures, and Fu2 refers to the medium-term futures. Op1 represents at-

the-money options with short maturity (ATM-SM). Op2 stands for out-of-the-money options

with medium maturity (OTM-MM), and Op3 represents out-of-the-money options with long

maturity (OTM-LM). There are 1,506 days in the sample.

Securities One Factor Two Factors Three Factors

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

log It 0.001108 0.001086 0.001109 0.001088 0.001110 0.001089

Fu1 0.002483 0.001764 0.001029 0.000943 0.001012 0.000945

Fu2 0.005281 0.003247 7.91e-07 8.25e-07 6.91e-05 7.63e-05

Op1 0.088729 0.158748 0.106400 0.173483 0.105036 0.170920

Op2 0.148157 0.231590 0.133920 0.193963 0.135280 0.194014

Op3 0.147164 0.205395 0.127986 0.160872 0.126119 0.176783
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Table 8: Out-of-Sample Absolute Percentage Option-Pricing Errors for the Restricted Model

This table reports the out-of-sample option-pricing errors, which are measured as the absolute

difference between the model-implied price and the observed price as a percentage of the

observed price, when the tradability restrictions in Equation (2.3) are imposed. There are

1,506 days and 72,706 out-of-sample observations in total. The options are divided into 15

groups based on maturity and moneyness. The mean of absolute percentage option-pricing

errors for each group is reported.

Maturity Model Moneyness(I/K)

<0.94 0.94-0.97 0.97-1.00 1.00-1.03 >1.03

<60 days one-factor 0.652439 0.513506 0.161487 0.057565 0.041584

two-factor 0.692845 0.554652 0.183325 0.054476 0.040922

three-factor 0.584405 0.480827 0.166922 0.059981 0.046241

60-180 one-factor 0.557312 0.152612 0.073373 0.083271 0.074360

two-factor 0.499041 0.141435 0.074932 0.083613 0.074989

three-factor 0.482627 0.136235 0.071584 0.084853 0.079741

>180 one-factor 0.244917 0.092458 0.106750 0.104697 0.093184

two-factor 0.196711 0.091136 0.108988 0.104538 0.087812

three-factor 0.220030 0.069068 0.084222 0.086135 0.079803
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Table 9: Difference in the In-Sample Absolute Percentage Pricing (Forecasting) Errors be-

tween the Unrestricted and Restricted Models

This table reports the absolute difference in the in-sample pricing errors between the unre-

stricted and restricted models. The pricing errors are measured as the absolute difference

between the model-implied price and the observed price as a percentage of the observed price.

There are 1,506 days. We report both the sample mean of the absolute difference between

the pricing errors and the standard error of the sample mean.

Securities One Factor Two Factors Three Factors

Mean Std.Err. Mean Std.Err. Mean Std.Err.

log It 6.10e-06 1.63e-07 2.77e-06 6.34e-08 5.08e-05 9.68e-07

Fu1 0.000252 3.34e-06 0.000291 6.85e-06 0.000507 8.20e-06

Fu2 0.000523 5.85e-06 4.09e-06 1.04e-07 3.54e-05 1.14e-06

Op1 0.015049 0.000376 0.018334 0.000560 0.023515 0.000717

Op2 0.057128 0.002218 0.057749 0.002241 0.049668 0.002066

Op3 0.073896 0.002096 0.063799 0.001790 0.076463 0.002617
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Table 10: Difference in the Out-of-Sample Absolute Percentage Option-Pricing Error between

the Unrestricted and Restricted Models

This table reports the absolute difference in the out-of-sample option-pricing errors between

the unresticted and restricted models. The pricing errors are measured as the absolute

difference between the model-implied price and the observed price as a percentage of the

observed price. There are 1,506 days and 72,706 out-of-sample observations in total. The

options are divided into 15 groups based on maturity and moneyness. We report both the

sample mean of the absolute difference and the standard error (in parentheses) of the sample

mean for each group.

Maturity Model Moneyness(I/K)

<0.94 0.94-0.97 0.97-1.00 1.00-1.03 >1.03

<60 days one-factor
0.1246

(0.0028)

0.0668

(0.0018)

0.0200

(0.0005)

0.0126

(0.0002)

0.0170

(0.0002)

two-factor
0.1790

(0.0036)

0.1020

(0.0028)

0.0311

(0.0009)

0.0153

(0.0003)

0.0183

(0.0003)

three-factor
0.0953

(0.0028)

0.0777

(0.0025)

0.0309

(0.0008)

0.0217

(0.0004)

0.0210

(0.0003)

60-180 one-factor
0.2036

(0.0044)

0.0423

(0.0011)

0.0163

(0.0003)

0.0309

(0.0004)

0.0441

(0.0005)

two-factor
0.1750

(0.0041)

0.0403

(0.0013)

0.0229

(0.0005)

0.0375

(0.0005)

0.0495

(0.0005)

three-factor
0.1523

(0.0043)

0.0457

(0.0015)

0.0229

(0.0005)

0.0375

(0.0005)

0.0473

(0.0006)

>180 one-factor
0.1139

(0.0036)

0.0489

(0.0013)

0.0789

(0.0014)

0.0920

(0.0015)

0.0947

(0.0017)

two-factor
0.0949

(0.0030)

0.0471

(0.0011)

0.0737

(0.0011)

0.0781

(0.0012)

0.0706

(0.0014)

three-factor
0.1282

(0.0041)

0.0332

(0.0008)

0.0534

(0.0009)

0.0668

(0.0010)

0.0703

(0.0013)
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Figure 1: Plots of the Tradability Premium in the Simulation

This figure plots the tradability premium and the tradability premium as a percentage of the

market price of risk in the two simulations in Section 4. The tradability premium is measured

as the difference between the market risk premium computed using parameters estimated

from the unrestricted model and the market risk premium computed using parameters esti-

mated from the restricted model in which the tradability restrictions in Equation (2.3) are

imposed. In this paper, the market risk premium associated with wt is −β(γ0 +
∑K

k=1 γkxk,t).

Therefore, the tradability premium is a stochastic process. This figure shows two samples.
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Figure 2: Plots of Observations

This figure plots the observations for estimation in this paper. The data covers the period

from January 3, 2001, to December 29, 2006, and there are 1,506 days in total. For each

day, there are six observations, including the daily log difference of the S&P 500 Index

(dlogSPXspot), the annualized log of futures spot ratio (ALFSR) for two S&P 500 futures,

and price-vega ratios for three S&P 500 options.
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Figure 3: Tradability Premium

This figure plots the tradability premium for each model based on the parameter estimate.

The tradability premium is defined as the difference between the market risk premium implied

by the unrestricted model and the market risk premium implied by the restricted model when

the tradability restrictions in Equation (2.3) are imposed. There are 1,506 days.
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Notes

1The pricing formulas for European derivatives written on the index futures can also be explicitly derived

in this framework. The details are given in this paper’s additional material.

2Re(zk(1 − iv)) > −1, Re(zk(−iv)) > −1, Re(zk(1 + iv)) > −1, and Re(zk(iv)) > −1,∀ k = 1, · · · ,K,

where Re(·) denotes the real part of a complex number, should also hold in order for the pricing formulas

to exist. Re(zk(1 − iv)) = Re(zk(1 + iv)) = −αk − (β + 1)µk − γk
2 (β + 1)2 + γk

2 v
2 = zk(1) + γk

2 v
2 and

Re(zk(−iv)) = Re(zk(iv)) = −αk − βµk − γk
2 β

2 + γk
2 v

2 = zk(0) + γk
2 v

2. Therefore, the restrictions (1.12)

and (1.16) are sufficient.

3Note that only futures and options data correspond to tradable assets.

4If the spot-futures parity, Ft,t+h = Ite
(r−q)h, in which r is the annually continuously compounded riskfree

interest rate and q is the dividend yield, holds for the index and its futures, then ALFSR simply equals the

riskfree interest rate minus the dividend yield.

5The Black-Scholes vega is the derivative of the Black-Scholes options price with respect to the volatility.

6Open interest refers to the total number of long (short) positions outstanding in a derivative contract.
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