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1 Introduction

The aim of this paper is to address the problem of partial observability, encountered re-

cently in epidemiological research on Covid-19. More specifically, some individuals are

infected and asymptomatic. Therefore, they remain undetected and unrecorded, espe-

cially during the early phase of the epidemic 1. As a consequence, the total count of

recovered and immunized individuals is unknown, as only the number of recovered de-

tected individuals is available. This problem of partial observability of counts renders

difficult the estimation of an epidemiological SIRD (Susceptible, Infected, Recovered, De-

ceased) model, extended to disentangle the infected and undetected from the infected and

detected individuals. Moreover, such substantial undocumented infection can facilitate

fast transmission of the virus (Li et al.(2020)).

The unknown total counts of infected individuals can be approximated by sampling the

population daily and performing serological tests on the sampled individuals to estimate

the rates of infected undetected and recovered individuals. However, it takes time to

validate and produce reliable serological tests for Covid-19. Moreover, regularly performed

sampling can be costly, especially in terms of time of health care providers. The alternative

method, proposed in this paper, is purely model-based. Loosely speaking, under the

standard extended SIRD model, the evolution of death rates might be different, depending

on whether all infected individuals are detected or not. This implied difference will allow

us for a model-based estimation of the proportions of infected undetected individuals

(resp. recovered immunized) [see, Verity et al.(2019) for pure model based estimation of

coronavirus infection, Manski, Molinari (2020) for set estimation of the infection rate].

This paper discusses the general case of time varying Markov processes when aggregate

counts are partially observed. It is organized as follows. Section 2 describes the latent

model of qualitative individual histories. These histories follow a time varying Markov

process with transition probabilities that can depend on latent counts and unknown pa-

rameters. The observations are functions of the frequencies of individual states (called

compartments in epidemiology), although not all of those frequencies are observed, in

general. More specifically, only some states can be observed and/or a sum of frequencies

1Even though some data on asymptomatic ratios are available [see e.g. Nishiura et al.(2020)], some
individuals may remain undetected for other reasons, e.g. an individual may refuse to be tested, or get
a false negative tests result.
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over subsets of states can be observed. Section 3 introduces the estimation method, which

jointly estimates the unknown parameters and the unknown state probabilities. We derive

the asymptotic properties of the estimators under identification. Identification, which is

the main challenge of the proposed approach, is the topic of Section 4. First, we discuss

the identification in a homogeneous Markov process, when the transition matrix is not

time varying. Without additional restrictions on the transition probabilities, that model

is not identifiable and the proposed approach cannot be used. However, it is not the

case for a time varying Markov process that includes contagion effects and, in particular,

for the SIR-type models used in epidemiology. The estimation approach is illustrated in

Section 5 with a SIR type model for French data. Section 6 concludes. Some technical

problems are discussed in the Appendices.

2 Latent Model and Observations

2.1 Latent Model

We consider a large panel of individual histories Yi,t, i = 1, ..., N, t = 1, .., T ,where the

latent variable is qualitative polytomous with J alternatives denoted by j = 1, .., J .

Assumption A1: The individual histories are such that:

i) The variables Yi,t, i = 1, .., N , at t fixed, have the same marginal distributions. This

common marginal distribution is discrete and summarized by the J-dimensional vector

p(t), with components:

pj(t) = P (Yi,t = j).

ii) The processes {Yi,t, t = 1, .., T}, i = 1, .., N , are independent (heterogeneous)

Markov processes with transitions between times t − 1 and t summarized by a J × J

transition matrix P [p(t − 1); θ] parametrized by θ. This matrix is such that each row

sums up to 1.

Thus, we consider a discrete time model applicable to data on a homogeneous pop-

ulation of risks. The time dependent transition matrix is written in terms of marginal

distributions for compatibility with the SIR-type epidemiological models.
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Let f(t) denote the cross sectional frequency, i.e. the sample counterpart of p(t). It

follows from the standard limit theorem that:

Proposition 1: Under Assumption A1, the frequencies f(t) are consistent of p(t) and

asymptotically normal for large N . Their variance-covariance matrix is given in Appendix

1.

This specification of the transition matrix includes the homogeneous Markov chain,

when there is no effect of lagged p(t−1). It also includes the standard contagion SIR-type

models used in epidemiology [see, McKendrick (1926), Kermack, McKendrick (1927) for

early articles on SI and SIR models in the literature, Hethcote (2000), Brauer et al.(2001),

Vinnicky, White (2010) for general presentations of epidemiological models, Allen (1994)

for their discrete time counterparts, Gourieroux, Jasiak (2020) for an overview, and also

examples given below].

As vectors p(t) change over time, stationarity is not assumed.

2.2 Observations

In practice, the individual histories, or the counts of flows between the states 2 may not

be observed, while cross-sectional frequencies are generally available. These can be the

frequencies f(t), t = 1, ..., T , or aggregates of such frequencies.

Assumption A2: The observations are: Ât = Af(t), t = 1, .., T , where A is a K × J
state aggregation matrix, that is a matrix with rows containing zeros and ones. The

aggregation matrix is known and of full rank K.

Example 1: When A = Id, all f(t)’s are observed. This is the case considered in McRae

(1977), Miller, Judge (2015).

Example 2: In a model of the coronavirus transmission, the following 5 individual states

can be distinguished: 1 = S, for Susceptible, 2 = IU , for Infected and Undetected, 3 = ID

for Infected and Detected, 4 = R for Recovered, and 5 = D for Deceased. Frequencies

f3(t) and f5(t) are observed, and the other frequencies are unobserved. We have a 2× 5

matrix A given by:

2See Breto et al. (2009) for the treatment of flow information.
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A =

[
0 0 1 0 0
0 0 0 0 1

]
,

which characterizes the selection of the frequencies.

Example 3: In other applications, matrix A truly aggregates the frequencies, as for

instance, in applications of cascade processes and percolation theory to an epidemiological

model 3. Let us consider a country with two regions and a SI model distinguishing these

regions. We get a 4 state model: 1=S1, susceptible in region 1, 2=S2, susceptible in

region 2, 3=I1, infected in region 1, 4=I2, infected in region 2. A transition model can

be written at a disaggregate level to account for both disease transmissions within and

between the regions. Thus, there is a competition between regions 1 and 2 as the sources

of contagion. However, only aggregate data for the entire country may be available. Then,

the aggregating matrix A is equal to:

A =

[
1 1 0 0
0 0 1 1

]
.

Although, in general, the process of aggregate counts: f1(t) + f2(t), f3(t) + f4(t) may

not be Markov, it is important to consider the special case when it is, and then explore

the possibility of identifying the parameters of the regional, i.e. disaggregated dynamics.

This is the objective of the percolation theory [see, Garet, Marchand (2006) for a detailed

analysis of competing contagion sources].

3 Estimation

Under Assumption A1, we can use the Bayes’ theorem to link the marginal theoretical

probabilities p(t) to the transition probabilities as follows:

p(t) = P [p(t− 1); θ]′p(t− 1), t = 2, ..., T. (3.1)

The nonlinear implicit recursive equation (3.1) is the discrete time counterpart of the

deterministic differential system, called the mechanistic model, which is commonly used

in epidemiology [see, Gourieroux, Jasiak (2020)]. It defines the ”dynamic equilibrium”

3See Good (1949) and Hammersley (1957) for the introductory articles on cascade processes and
percolation, respectively.
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for the sequence of cross-sectional distributions. These equations will be used as the

estimating equations in the asymptotic least squares estimation method outlined below
4. In our framework, the parameter of interest includes θ as well as the (equilibrium)

sequence of vectors p(t). They can be jointly estimated from the following optimization:

(p̂(1), .., p̂(T ), θ̂) = ArgMinp(t),θ

T∑
t=2

||p(t)− P [p(t− 1); θ]′p(t− 1)||2 (3.2)

s.t. Ap(t) = Af(t) = Ât, t = 1, .., T,

where ||.|| denotes an Euclidean norm. This estimation is constrained to account for the

positivity and unit mass restrictions on the p(t)’s, and for potentially other restrictions

on parameter θ (see, Section 5.3).

The estimation method depends on the selected norm, such as ||p||2 = p′p, or ||p||2 =

p′Ω−1p, where Ω is a symmetric positive definite matrix, or a norm, which varies during

the disease transmission depending on the precision of frequencies f(t) [see, Gourieroux,

Jasiak (2020)].

Proposition 2: If the constrained optimization given above has a unique solution, which

is continuously differentiable with respect to Af(t) = Ât, t = 1, ..., T , then the estimator

is asymptotically consistent, converges at rate 1/
√
N , and is asymptotically normally

distributed.

Proof: see Appendix 2.

The expression of the asymptotic variance-covariance matrix is derived by a delta method

from the asymptotic variance-covariance matrix of f(t) given in Appendix 1.

If A = Id, that is, if all frequencies are observed, we obtain the case analysed in

McRae (1977). In the general framework, this optimization is not only used to estimate

parameter θ, but also to approximate the unobserved marginal probabilities.

For ease of exposition, let us consider A = Id. The constrained optimization (3.2) can

be interpreted in a (pseudo) state space framework with the measurement equation:

f(t) = p(t) + u(t), t = 1, ..., T, (3.3)

4see, Godambe, Thompson (1974), Hardin, Hilbe (2003).
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the deterministic state equation:

p(t) = P [p(t− 1; θ); θ]′ p(t− 1), t = 1, ..., T, (3.4)

and an assumption on the variance of u(t), depending on the selected Euclidean norm.

This is a pseudo-state space representation, rather than an exact state space represen-

tation, as the errors u(t) are serially dependent [see, Appendix 1]. A Kalman filter 5

can be applied to the above pseudo-state space [for example, under the assumption of

independent errors u(t) ∼ N(0,Σ)] to estimate numerically equation (3.2). However, the

estimated elements of the variance-covariance matrix of θ̂, p̂t, t = 1, ..., T provided by a

Kalman filter are incorrect due to misspecified serial dependence. The estimated stan-

dard errors can be adjusted either by applying the ”sandwich” variance estimator, or by

using the bootstrap. The bootstrap can additionally adjusts for the non-normality of

errors u(t), at the beginning of the epidemic, when the distribution may by closer to a

multivariate Poisson distribution than to a normal distribution.

The condition for the uniqueness of the solution given in Proposition 2 is an identifi-

cation condition, which is discussed in detail in the next section.

4 Identification Condition

In this section we discuss the (asymptotic) identification corresponding to the objective

function with ||p||2 = p′p given in Section 3. For a homogeneous Markov process with

θ = P , this objective function has a simple form, as under linear constraints it is quadratic

with respect to the sequence p(t). This allows us for an optimisation in two steps: first

with respect to the p(t)’s, and next, with respect to θ after concentrating. This is the

approach used below for identification 6. Next, the analysis is extended to the SIR model

to observe the outcomes of a path dependent transmission effect.

5a standard Kalman filter, or an extended Kalman filter [Song, Grizzle (1995), Julien, Uhlman (1997),
Einicke, White (1999), Krener (2003)], or unscented Kalman filter [Wan, Van der Merwe (2000)].

6This numerical simplification will not arise for other measures of distance in the Cressie-Read family
between probability distributions [Cressie,Read (1984), Miller,Judge (2015)].
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4.1 Order Condition

By taking into account the fact that probabilities sum up to one, we can compare the

number of moment conditions equal to (J − 1)(T − 1) with the number of parameters of

interest (J−K−1)T + dim θ. Therefore, the order condition is KT−(J−1) ≥ dim θ. It is

satisfied iff the number of days T is sufficiently large. However, in a non-linear framework

the order condition is insufficient for identification, in general. Let us now consider the

rank condition, which is a condition of local identification.

4.2 Rank condition for Homogenous Markov

For ease of exposition, we first consider the example of a homogenous Markov model with

3 states: J = 3, which is the number of states in a SIR model [see, Section 4.3]. The

parameter θ includes the elements of the transition matrix P , which has 6 independent

components, given that each row of P sums up to 1. We assume that the observed

marginal probabilities are p3(t), t = 1, .., T . Thus, we have partial observability. From the

Bayes’ theorem, it follows that

p(t) = P ′p(t− 1), t = 2, ..., T, (4.5)

leading to 2(T − 1) independent moment restrictions that are the estimating equations:

p2(t) = p12p1(t− 1) + p22p2(t− 1) + p32p3(t− 1),

p3(t) = p13p1(t− 1) + p23p2(t− 1) + p33p3(t− 1),

or equivalently,

p2(t) = p12[1− p2(t− 1)− p3(t− 1)] + p22p2(t− 1) + p32p3(t− 1),

p3(t) = p13[1− p2(t− 1)− p3(t− 1)] + p23p2(t− 1) + p33p3(t− 1). (4.6)

To discuss identification, we search for the solutions in θ = P and p(t), t = 1, ..., T of

system (4.3) written for t = 2, ..., T . We have the following result:
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Proposition 3: For a homogeneous Markov model with J = 3 and observed p3(t), t =

1, ..., T , generically, i.e. up to a (Lebesgue) negligible set of parameter values, and if

T ≥ 6, we have that:

i) Parameter P is not identifiable, with an under-identification order equal to 3.

ii) There exist 3 functions of P that are identifiable. These functions are independent

of T .

iii) These functions are over-identified with an over-identification order equal to T −5.

Proof: The proof is based on a concentration with respect to the values of p2(t). From

the second equation of system (4.3), we see that p2(t − 1) is a linear affine function of

p3(t), p3(t − 1), with coefficients that depend on P . These linear affine expressions can

be substituted into the first equation of system (4.3) to show that the observed sequence

p3(t) satisfies a linear affine recursion of order 2:

p3(t) = a(P ) + b(P )p3(t− 1) + c(P )p3(t− 2), t = 3, ..., T,

with coefficients that depend on P . The results follow since:

i) the functions a(P ), b(P ), c(P ) are identifiable;

ii) the degree of under-identification of P is: 6-3=3;

iii) the degree of over-identification of the identifiable parameters is: T −2−3 = T −5.

Q.E.D.

Appendix 3 provides the expressions of functions a(P ), b(P ), c(P ) and points out that

Proposition 3 holds, except for conditions that are (Lebesgue) negligible. In particular,

identification requires that observations p3(t) correspond to a nonstationary episode as

shown in the remark below.

Remark 1: Let π denote the stationary probability solution of the Markov chain, defined

by:

π = P ′π.

If the observed p3(t) = π3 were associated to a stationary episode, the sole identifiable

function of parameters would be π3(P ) and the under-identification degree would be equal

to 6-1=5. Therefore, by observing the process during a nonstationary episode, we gain 2

identification degrees.
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Remark 2: If the Markov structure is recursive, that is, if matrix P is upper triangular, the

under-identification degree becomes 3-3=0, and the parameter is generically identifiable.

Proposition 3 shows that we can expect to identify the parameter of interest if we

either consider a) a homogeneous Markov and constrain the parameters, as illustrated

in Remark 2 by an example of the recursive system, or b) a non-homogeneous Markov

discussed in the next subsection.

Remark 3: The rank condition can be derived in the general case of any number of states

J and any type of partial observability of A. The relation between the observations At

(for N large) and the parameters of interest P, p(t), t = 1, ..., T is given by:

At = Ap(t), t = 1, ..., T,

p(t) = P ′p(t− 1), t = 2, ..., T. (4.7)

The second equation can be solved for p(t) as a function of P and p(1), as p(t) =

(P ′)t−1p(1). Next, this expression of p(t) can be substituted into the measurement equa-

tion to get:

At = A(P ′)t−1p(1), t = 1, ..., T. (4.8)

Next, we need to find the Jacobian of the transformation associating A1, ..., AT to

P, p(1). This Jacobian can be obtained by considering the impact of small shocks δP and

δp(1) to P and p(1) on At. By differentiating equation (4.8), we get a linear system in

δP and δp(1):

δAt = A
t−2∑
k=0

[
(P ′)k(δP )′(P ′)t−k−2

]
p(1) + A(P ′)t−1δp(1), t = 1, ..., T. (4.9)

System (4.9) can be rewritten in terms of [vec′(δP ′), vec′δp(1)]′ as: δA1
...

δAT

 = J [vec′(δP ′), vec′δp(1)]′,
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and the rank of Jacobian J can be compared with the parameter dimension (taking into

account the unit mass restrictions). In applications, the rank condition has to be checked

for each specific model of interest, as shown above for J = 3.

4.3 Rank Condition in a Disease Transmission Model

Let us now consider an epidemiological model with J = 3 states to facilitate the compari-

son with the example in Section 4.2. The states of the SID model are: 1=S for susceptible,

2=I for infectious (individuals stay infectious, even if they recover), 3=D for deceased.

The rows of the transition matrix are the following:

row 1 = S : (1−p13)[1−logist(a1+a2p2(t−1))]; (1−p13)logist(a1+a2p2(t−1)); p13

row 2 = I : 0; 1− p23; p23

row 3 = D : 0, 0, 1

where logist(x) = 1/[1 + exp(−x)] is the logistic function, i.e. the inverse of the logit

function. We obtain a triangular transition matrix with state D as an absorbing state.

The contagion effect is characterized by parameter a2 and follows a nonlinear logistic

function. We also expect that mortality rate p23 is strictly larger than mortality rate p13.

There are 4 independent parameters in θ = [a1, a2, p13, p23]
′.

Proposition 4: The SID model with observed p3(t) given above is generically identifiable.

Parameter θ is over-identified with an over-identification order equal to 5.

Proof: The proof is similar to the proof of Proposition 3. The two independent moment

conditions are:

p2(t) = (1− p13)logist[a1 + a2p2(t− 1)][1− p2(t− 1)− p3(t− 1)] + (1− p23)p2(t− 1),

p3(t) = p13[1− p2(t− 1)− p3(t− 1)] + p23p2(t− 1).

From the second equation, it follows that p2(t− 1) is a linear affine function of p3(t) and

p3(t − 1). Next by substituting into the first equation, we find that the observed p3(t)

satisfies a nonlinear recursive equation of order 2 of the type:

p3(t) = a1(θ) + b1(θ)p3(t − 1) + c1(θ)p3(t − 2) + [a2(θ) + b2(θ)p3(t − 1) + c2(θ)p3(t −
2)] logist[a3(θ) + b3(θ)p3(t− 1) + c3(θ)p3(t− 2)].
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If T is sufficiently large, this nonlinear observed dynamics allows us to identify 9 nonlinear

functions of parameter θ. Thus, parameter θ is identifiable with an over-identification

order equal to 5.

Q.E.D.

Remark 2 suggested earlier that the triangular form of the transition matrix alone

would facilitate the identification. However, the order of over-identification reveals the

additional role of the contagion effect. The nonlinear dynamics induced by the logistic

transformation also facilitates identification.

Remark 4: As in the case of a homogeneous Markov process, it is theoretically possible to

compute the Jacobian associating the observed aggregates At to the underlying parameters

θ, p(t), t = 1, ..., T . The condition on the rank of the Jacobian is difficult to interpret in

epidemiological terms, except for specific models, such as the SID model given above.

5 An Illustration

This section illustrates the estimation approach and its performance in an epidemiological

model. It is intended to recover the rate of infected undetected individuals, who are often

asymptomatic.

5.1 The model and observations

We consider a model with 5 states: 1=S, 2=IU, 3=ID, 4=R ,5=D, and the following rows

of the transition matrix:

row 1: (1− p15)π11t; (1− p15)π12t; (1− p15)π13t; 0; p15,

where the π1jt, j = 1, 2, 3 sum up to 1, and are proportional to:

π11t ≈ 1; π12t ≈ exp[a1 + b1p2(t−1)+ c1p3(t−1)]; π13t ≈ exp[a2 + b2p2(t−1)+ c2p3(t−1)]

row2: 0; p22; p23; p24; p25

row3: 0; 0; p33; p34; p35

row 4: 0; 0; 0; p44; p45

row 5: 0; 0; 0; 0; 1

Conditional on staying alive, the first row includes a multinomial logit model for

the competing disease transmission driven by either lagged IU, or lagged ID [see, e.g.
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McFadden (1984)]. The transmission parameters b1, c1, b2, c2 are non-negative and allow

for different impacts of p2(t − 1) and p3(t − 1), as the detected individuals are expected

to be self-isolated more often. There is no contagion effect from the recovered R, who are

assumed no longer infectious 7. The structure of zeros in the transition matrix indicates

that one cannot recover without being infected, one cannot be infected twice 8 and death

is considered as an absorbing state.

This is a parametric model with 6+7=13 parameters, i.e. the 6 parameters al, bl, cl, l =

1, 2 and 7 independent transition probabilities.

Among the 5 series of frequencies fj(t), j = 1, .., 5 that sum up to 1 at each date, f3(t)

and f5(t) of infected detected and of deceased, respectively, are assumed to be observed.

The frequencies f2(t) and f4(t) are unobserved and will be considered as additional quan-

tities of interest to be estimated jointly. They are crucial for a model-based inference on

counts of infected undetected and of recovered immunized individuals.

As illustrated in Section 4.3, the triangular form of the transition matrix and the

nonlinear doubly logistic contagion dynamic will provide generic identification.

5.2 Simulations

The above model can be used for simulation of the Covid-19 transmission for given values

of parameter θ and initial value p(1). These values are set as follows:

The daily mortality rates are: p15 = p45 = 3e − 05, p25 = 0.004, p35 = 0.013. The

mortality rates p15 = p45 correspond to the long term mortality rates in France; p35 is an

average mortality rate of individuals detected with Covid-19 in hospitals [see, Verity et

al.(2020), Table 1 for a comparison], p35 has been fixed between those numbers to account

for a lower rate due to the presence of asymptomatic individuals [see e.g. Nishiura et

al.(2020) for the asymptomatic ratio].

We assume that there are about 3 times more transitions to IU than to ID,i.e.

exp(a1) = 3 exp(a2), b1 = b2, c1 = c2,

7For viruses other then Covid-19, the recovered, immunized individuals can stay infectious.
8This was initially anticipated for Covid-19. Recently, it has been documented that some recovered

individuals have not become immune. The number of repeated infections is too low for reliable statistical
analysis.
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and the transmission effects due to IU and ID, are equal, i.e. b2 = c2. Then a2, b2 are set

such that:

exp(a2) = 1e−06 and exp(2b2/1000) = 25. These parameters have been set to provide

about 60 new daily detected infections at the beginning of the epidemic for a population

of 60 millions of inhabitants, and 1500 new daily infections later on, about 30 days after

the beginning.

The parameters p23, p24, p34 are as follows:

p24 = p34 = 0.03, representing an average recovery time of about 33 days before being

immunized. This average time is fixed equal for the IU and ID states in the simulation.

Rate p23 is fixed equal to p12 = 1e− 06.

Coefficient a2 is strictly positive. This means that there can exist exogenous sources of

infections for the population of interest, either from animals to humans, or more impor-

tantly from humans of another population to humans in the population of interest, due

to either tourism, or migration. Thus, we consider an open economy from the epidemi-

ological point of view 9. We do not account for the increase of daily tests for Covid-19

performed during the epidemic (its effect in France during the early phase of the epidemic

was negligible due to shortages of test components 10).

Next, the parameters of the diagonal transition probabilities are computed from the

unit mass restrictions on each row.

All probabilities of transitions out of the diagonal are very small as a consequence of the

daily frequency of our data. The initial marginal probabilities are set equal to: p(0) =

(1, 0, 0, 0, 0), which corresponds to an initial population with no prior infection from the

coronavirus in this population. Thus, the first cluster of infections has to be linked to

travellers arriving to the country.

Two types of dynamic analysis can be performed, depending whether the sequence

of p(t), or the sequence of f(t) are considered. The dynamics of p(t)’s are deterministic,

and driven by the deterministic system (3.1). They provide us the dynamics of the ex-

pected values of f(t)’s. The dynamics of f(t)’s are stochastic with trajectories obtained

9The idea of collective immunity, which implies that the infection disappears if more than 60% of
people are immune, implicitly assumes a closed economy. It is valid for the world in its entity, but not
for each open country separately.

10Our model does not take into account the reliability of the tests for Covid-19, i.e. the proportion of
false negative outcomes.
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by simulating the time varying Markov process. As an additional outcome, the differ-

ence between the p(t)’s and f(t)’s provides a measure of uncertainty on any predictions

obtained from the deterministic model of p(t)’s [see, Appendix 1 for the autocovariance

function of u(t) = f(t)− p(t)].
Figure 1 shows the evolutions of p2(t), p3(t), p4(t), p5(t) in separate panels as their

ranges and evolutions differ, due to the selected parameter values. In addition, Figure 1

illustrates the effect of an increase (decrease) of transmission parameters b1, b2, c1 and c2

on the marginal probabilities.

[Insert Figure 1: Evolutions of Marginal Probabilities]

The solid lines represent the trajectories of p(t)′s computed from the baseline parameter

values given above. The dotted and dashed lines, respectively, depict the trajectories

obtained when parameters b1, b2, c1 and c2 increase and decrease by a factor of 2, respec-

tively.

The change of transmission parameters has an impact on the shape of curves, resulting

in faster (slower) rates of increase in all panels, except for the bottom right one. The

dynamic of p5(t) does not seem affected, as the trajectories computed from the baseline

and increased (decreased) parameter values overlap one another.

Figure 2 displays the evolutions of p3(t)− p3(t− 1) and p5(t)− p5(t− 1) multiplied by

the total size of the population, i.e. 60 millions. These are the new counts of ID, to be

compared with the health system capacity, and the numbers of new deaths D, including,

but not limited to the confirmed deaths from Covid-19.

[Insert Figure 2: Evolution of New Counts]

As before, the solid lines represent the trajectories computed from the baseline parameter

values and the dotted and dashed lines show the trajectories obtained by increasing and

decreasing the parameter values, respectively. A change in transmission parameters affects

the shape of the curves of new counts, resulting in higher (lower) growth rates of new

counts.

The evolutions are computed over a period of 60 days, i.e. 2 months. During this

episode, the total number of infected individuals remains rather small, as compared to

the size of the population and so does the total count of deaths. The above figures have to

be interpreted in terms of stocks and flows as the numbers associated with R and D (resp.
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IU, ID) are cumulated and are interpretable as stocks (resp. flows). This cumulation

effect explains the increasing patterns in Figure 1, with higher rates for higher values of

transmission parameters.

The counts of individuals in the two Infected states IU and ID are flows, as they are

observed between the times of entry in, and exit from the state of infection. Moreover,

the probability of exiting after 20 days is very close to 1. We usually expect a ”phase”

transition effect: For small t, these counts increase quickly as new infected individuals

are cumulated without a sufficiently high number of exits to compensate for the arrivals.

This explains an increase of the curves at the beginning of the period. After that initial

period, the counts of exits tend to grow and offset the new arrivals so that the curves

tend to flatten. More precisely, they continue to increase, due to the disease transmission

effect, but at a very low rate. This is the so-called flattening of the curve. This theoretical

evolution depends on the choice of parameter values, especially the transmission param-

eters. Given the selected parameter values that allow for exogenous sources of infection,

the initial convex pattern in the counts of infected is not visible. Only the concave part

of the curve, up to its flat part, is observed. One can perform similar dynamic sensitivity

analysis for other credible scenarios.

The Figures given above have been simulated with time independent propagation

parameters. A self-isolation measure introduced at some point would have changed sub-

sequent evolution. There is first a tendency to reach a flat part on the curve without

self-isolation, and then to reach a lower flat part on the curve with self-isolation mea-

sures. Therefore, over a longer period, the first flat part can appear as a smoothed peak.

If self-isolation measures are lifted afterwards, a second peak of infections is expected, and

so on, resulting in a sequence of stop and go [Ferguson et al.(2020), Gourieroux, Jasiak

(2020)].

5.3 Estimation

This section presents the estimation of the extended SIRD model from data on Covid 19

transmission in France over the period of 22 days between 03/16 to 04/06, 2020.

The model introduced in Section 5.1 assumes a stable environment of constant social

distancing measures, which was the case in France during the observation period. A total
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lock-down was implemented on the weekend of March 16 (after the first round of municipal

elections), with the closure of shops, schools, universities and strict social distancing rules.

This self-isolation measure had an impact on the spread of the disease, especially on the

transmission parameters and some mortality parameters 11. To detect that effect, it

would be necessary to estimate separately the model over the periods of March 1 to 15,

and March 16 until April 7, which would be possible as these periods are sufficiently long

for identification (see Proposition 3) 12. Then, we could compare the results to measure

the efficiency of the lock-down and perform predictions including the effects of different

stages of reopening.

We focus on the second period which is sufficiently stable for the estimation purpose.

The fully observed states are the states ID and D. State ID is assumed equivalent to

hospitalization, as the counts of (”confirmed”) detected, which are publicly available, are

measured with error and are not reliable. This is due to the counts of detected individuals

being derived from the PCR test results, while not all tests results may have been recorded,

some people could have been tested multiple times, inflating the counts, or people might

have not been tested at random, or without an adequate exogenous stratification, which

creates a selectivity bias 13 14. In contrast, the hospitalization data are more reliable and

regularly updated. State D is assumed observed through total death counts. These include

deaths from Covid-19, which are reported on-line as D/H, i.e. death after hospitalization,

and are known to underestimate the true number of deaths due to the coronavirus, as

they do not include all deaths from Covid-19 at home, or in the long-term health care

institutions.

The series to be estimated are the theoretical proportions of infected undetected IU

and recovered R. We use the available series of (”confirmed”) detected and of recovered

11The effect of Covid-19 on the total mortality rate is unclear. There is a negative effect of the virus.
However, there also are some positive effects due to better protection against other viruses, such as the
influenza, and a reduced number of car accidents.

12It is not the case for countries where the outbreak is very recent, or self-isolation implemented too
late, or data are unreliable at the beginning of the outbreak (Wuhan), or the isolation period is too short
(Denmark), or introduced in successive steps, or self-isolation measures are different across the regions
(Germany and the US).

13During this period, the PCR tests were processed only in hospital laboratories, as private laboratories
were not sanctioned. Moreover, the serological tests were not publicly available or officially authorized.

14Similar data are used for estimation in Manski, Molinari(2020), but not adjusted for the significant
selectivity bias.
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after hospitalization, for comparison with the estimates.

More specifically, we use the French data on the total daily number of deaths from the

French National Statistical Institute INSEE (2020) and the daily data on coronavirus pan-

demic from Sante Publique France (2020) reported at https://dashboard.covid19.data.gouv.fr/

and https://www.linternaute.com/actualite/guide-vie-quotidienne/2489651-covid-19-en-france-

les-dernieres-statistiques-au-06-avril-2020/, available on April 06 15. The daily evolutions

of total counts of hospitalized, detected, recovered and deceased individuals reported by

these sources on April 6 are displayed in Figure 3. Note that the data used in this study

can differ from the data currently reported, due to updating. In particular, the daily data

on overall death counts in France have been since updated and adjusted for individuals

deceased at home or in long term health care facilities. For example, the new records

report 2713 deaths on April 6, 2020, as compared to the initially reported number of 2401

used in this study.

[Insert Figure 3: Evolution of Observed Counts, 03/16 to 04/06, France]

The panels display the series of ”hospitalized”, ”confirmed” (i.e. detected), ”returned

from hospital” (i.e. recovered after hospitalization) in the top row and left bottom panels,

respectively. In the bottom right panel, the dynamics of counts of total deceased (solid

line) and deceased due to Covid-19 (dashed line) are distinguished.

The model introduced in Section 5.1 has been estimated by optimizing objective func-

tion (3.2) under the constraints of positivity, unit mass of the rates and non-negativity of

the transmission parameters b1, c1, b2, c2. The results are as follows: The estimated coef-

ficients are a1 = −8.6517, a2 = −11.1481, b1 = 0.0034, b2 = 2.499e− 05, c1 = 8.482e− 05

c2 = 0.00028. The estimated coefficient of mortality rate p15 is 3.1575e-05, which is close

to the mortality rate in France of 3e-05 = 0.03/1000, used in the simulation study in Sec-

tion 5.2. The remaining estimated parameters of the transition matrix are given below in

Table 1:

Table 1. Estimated Transition Matrix

15The size of the French population is 66,9 millions of inhabitants.
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1= S 2=IU 3=ID 4=R 5=D
2=IU 0 0.9022 0.0386 0.0571 0.00207
3=ID 0 0 0.7926 0.1032 0.0158
4=R 0 0 0 0.9999 1.514e-5
5=D 0 0 0 0 1

As pointed out in the simulation, some parameters, such as transmission parameters and

transition probabilities are very small, and difficult to estimate. These parameter values

are determined by their epidemiological interpretation and the selected time unit. The

transition parameters take positive values, even when estimated under the non-negativity

constraint.

Table 2 provides the confidence intervals (CI) for selected transmission parameters and

transition probabilities. They have been computed by bootstrap in order to accommo-

date the finite sample properties of estimators, especially those with small positive values,

whose finite sample distributions are asymmetric. For that reason, some confidence in-

tervals are not centered at the estimated values. Yet, the focus is on the transmission

parameters, regardless of their small values. The epidemiological models are nonlinear

dynamic models with chaotic features, in the sense that small changes in some parameters

can have a substantial impact in the long run. Note that the traditional representation

of the confidence intervals (CI) can be misleading, especially for the parameters that sum

up to one.

Table 2. Confidence Intervals

parameter CI parameter CI
b1 [0.0031, 0.0052] p23 [0.0099, 0.0560]
b2 [0.252e-05, 4.032e-05] p24 [0.0273, 0.0942]
c1 [4.497e-05, 17.203e-05] p25 [0.00098, 0.00356]
c2 [0.00023, 0.00047] p34 [0.068, 0.1057]

p35 [0.0092, 0.0214]

The evolutions of estimated counts of IU, i.e. infected and undetected and of R,

i.e. recovered are shown in Figure 4 (solid line). The estimates are compared with

the available counts of (”confirmed”) detected individuals and of recovered after being

hospitalized (R—H).

[Insert Figure 4: Estimated and Observed Counts]
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The estimated counts exceed those reported by the media in April 2020. In particular,

the observed and estimated counts on April 06, 2020, which is the last day of sample are

as follows: The final observed count of (”confirmed”) detected is equal to 78167 and is

1.2 times smaller that the estimated final count of infected and undetected (IU) equal to

94461. The observed final count of Recovered (after being hospitalized) equal to 17250 is

6.24 times smaller than the estimated final count of Recovered equal to 107640.

Let us now present a scenario of a projected evolution, based on the estimated coef-

ficients values and probabilities. These projections were performed on April 06, without

taking into account future social distancing measures, increase of PCR tests, mandatory

personal protective equipment (PPE), or the retrospective updates of databases. Figure

5 below shows the projected evolution of the marginal probabilities of IU, ID, R and D

over the period of 25 years. This long horizon gives insights into the long run properties

of the estimated dynamic model. It corresponds to the duration of the measles epidemic

in London, prior to the vaccine, with infections documented over the period 1948 to 1964.

[Insert Figure 5: Projected Evolution of Marginal Probabilities]

Figure 5 displays peaks in marginal probabilities of states 2 and 3 that occur after about

98 days. At the peak, the projected count of infected and undetected (IU) individuals

is over 300,000. In addition, we observe that the estimated model reveals no collective

immunity. After 25 years, 35 % of the population-at-risk from March 16 die (not neces-

sarily from Covid) and about 65 % are immunized. The existence of collective immunity

depends on the selected model. In the standard SIR model, the collective immunity exists

if the reproductive number R0 is larger than 1, and it does not, otherwise. The specifi-

cation outlined in Section 5.1 differs from the standard SIR in terms of the expressions

of transmission functions π12,t, π13,t. They are equal to exp(a1), exp(a2), respectively, if

p2(t−1) = p3(t−1) = 0, whereas in the standard SIR, they are equal to 0. The estimated

non-zero values of exp(â1), exp(â2) reflect the transmission due to individual travelling

between countries and regions. The projected results need to be interpreted with caution,

due to the uncertainty on parameter estimates [see, Table 2].

Another pessimistic outcome is that without any social distancing measures, medical

treatment for Covid-19, or a vaccine, it takes about 25 years for the marginal probabilities

of IU and ID to decline to 0.
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Figure 6 below shows the projected daily new counts of ID, as approximated by the

net balance of hospitalizations over an initial period of 60 days, which can be used for the

assessment of the capacity of the health sector.

[Insert Figure 6: Projected Evolution of Net Balance of Hospitalization]

The dashed line shows the projected daily net changes in hospitalization, computed as

∆p3(t)∗pop, over 60 days following the end of sample on April 6. The dashed line depicts

the true net changes in hospitalization observed ex-post. On April 15 (i.e. after 10 days)

the net changes in hospitalization become negative (-513) and remain negative with high

variation between -792 on 06/05 and 0 on 04/26. Nevertheless, on April 15, there are 2415

new hospitalizations and 275 new admissions to the ICU. From April 15 on, the number

of patients released from the hospital exceeds the number of new admissions, resulting in

negative net changes. The dotted lines represent the CI of the projection.

We observe that the projection detects the flattening of the curve of infections, al-

though it overestimates the timing of the peak, i.e. the timing of the first value 0 on

April 15, known ex-post. The predicted curve lies above the realized curve, revealing a

prediction of the number of beds required for Covid-19 hospitalizations 16 However, the

projection performed on April 6 has not been updated at any future date, as it is done

in practice. The prediction can be updated daily, without re-estimating the model. In

particular, the Kalman filter algorithm applied to the pseudo state space representation

(see, Section 3) accommodates easily daily prediction updating.

6 Concluding Remarks

This paper is intended to provide a solution for incomplete counts of infected and un-

detected individuals and of recovered individuals. These unknown quantities can be es-

timated jointly with the parameters of a compartmental epidemiological model. This

approach is illustrated in an estimation involving French count data on Covid-19 infec-

tions [see also Brown et al. (2020) for an application to North Carolina]. Our methodology

16The estimation performed on April 06 could not take into consideration the retrospectively updated
total death counts. This could explain, at least to some extent, the observed bias. According to the
updated sources, the evolution of deaths was more explosive at the beginning, i.e. close to March 16, and
its inflection changed earlier too.
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required daily data on the total counts of deaths, comprising the deaths due to Covid-19.

These data are available in France and other European countries [see, the website Euro-

momo], but may be publicly unavailable in other countries, such as Canada. The results

derived for one country (France) cannot be extrapolated directly to another country or

state, because of differences in age structure and comorbidity.

More specifically, our results cannot be directly compared with other studies of un-

documented infections in the US [see, Hortacsu, Liu, Schwieg (2020)] and China [Li et al.

(2020)]. The comparisons are difficult, as each study employs different models, aggregate

data and estimation methods. For example, Li et. al. (2020) use a (multicities) four state

model with only 6 parameters, including 2 transmission parameters. They do not include

the states D of Death and R of Recovered and they do not use the observations on the

total number of deaths. Their estimation method is also different. More specifically, Li

et al. (2020) use Bayesian methods, which are sensitive to the selected priors (Section 1

of the on-line ”Supplementary Material”). As another example, Hortacsu et al. (2020),

(Section 4), use conterfactual analysis, with fixed values of relevant parameters, such as

the rate of asymptomatic, which is set equal to 0.6 and 0.1.

We consider a discrete time model, although the epidemiological literature relies mostly

on the continuous time mechanistic model. The discrete time model provides consistent

parameter estimates of the pseudo state-space representation and better accommodates

daily data. This is because the trajectory of a Euler discretized continuous time model,

even with a very short timestep, can be significantly different from the continuous time

trajectory. Moreover, the conditions of collective immunity inferred from the discrete

and continuous time models can differ [see, Boalto et al. (2018) and Allen (1994)]. This

difficulty, due to the sensitivity of nonlinear dynamics with respect to the size of timestep,

is out of the scope of this paper.

Various extensions of the model examined in this paper can be considered:

i) As mentioned earlier, the model is a special case of a nonlinear pseudo state space

model, with states p(t), deterministic state equations (3.1), and measurement equations:

Ât = Ap(t) + Au(t), where u(t) denotes the difference between the observed frequencies

f(t) and p(t). Additional state space variables could also be introduced to account for

individual compliance with self-isolation measures and their dynamic [see e.g. Alvarez et

al.(2020), Chudik et al.(2020),Ferguson et al.( 2020), Tang et al. (2020)].
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ii) The individual efforts (moral hazard phenomenon) have impact on the transmis-

sion parameters. These can be captured by introducing transmission parameters with

stochastic heterogeneity over time. In particular, some specific heterogeneity dynamics

would allow for reproducing the stop and go phenomenon [see e.g. Ferguson et al.(2020),

Figure 4]. More generally, the model can be extended by introducing time dependent or

stochastic time dependent transmission parameters [see e.g. Dureau (2013), Boato et al

(2018), Gourieroux, Lu (2020) for extensions of the SIR model]. It may be important to

account of the mover-stayer phenomenon, as over time, the remaining Susceptibles are

those who are more resistant to the infection.

iii) Other specifications of the propagation functions πt can also be considered and

compared [see Wu et al. (2020)]. The treatment of missing data can likely be improved

by introducing additional explanatory variables that are expected to impact the virus

trnsmission. This approach is followed in Hortacsu et al. (2020) who use hospitalization

data from various regions and interregional transportation data to forecast infection rates.
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Appendix 1

Expression of the Autocovariance Operator

Instead of characterizing the individual histories by the qualitative sequences Yit, a

sequence of J-dimensional vectors Zit can alternatively be considered, where component

j is the 0-1 indicator of Yit = j. Then we have:

E(Zt|Zt−1) = P (t− 1)Zt−1,

where P (t − 1) denotes the transition matrix from date t-1 to date t. By the iterated

expectations theorem, we get:

E(Zt|Zt−h) = Π(t− 1;h)Zt−h,

where Π(t− 1;h) = P (t− 1)...P (t− h).

Let us now consider the covariance:

Ωt,t−h = Cov(Zt, Zt−h) = E(ZtZ
′
t−h)− E(Zt)E(Zt−h)

′

= E(Π(t− 1;h)Zt−hZ
′
t−h)− p(t)p(t− h)′

(by the iterated expectation and using E(Zt) = p(t))

= Π(t− 1;h)E[diag(Zt−h)]− p(t)p(t− h)′

(by taking into account the 0-1 components of Z)

= Π(t− 1;h)diag[p(t− h)]− p(t)p(t− h)′.

This is the expression of the autocovariance as a function of the p(t)’s and model pa-

rameters. Under Assumptions A.1. and after a normalization by 1/N we obtain the

autocovariance of the frequencies f(t), t = 1, ..., T and of the measurement equation error

u(t), t = 1, ..., T in the pseudo state space representation.
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Appendix 2

Asymptotic Expansions

The asymptotic expansions are easily derived, given that the optimization in Proposi-

tion 2 is deterministic. Therefore, estimators p̂(1), p̂(2), ..., p̂(T ), θ̂ are deterministic func-

tions of observations Ât = Af(t), t = 1, .., T . If the transition matrix is twice continuously

differentiable with respect to p(t− 1) and θ in a neighbourhood of the true values, these

deterministic functions are continuously differentiable. Then, by using the asymptotic

normality of f(t)’s (Proposition 1), we can apply the delta method to deduce the 1/
√
N

rate of convergence of the estimators and their asymptotic variance-covariance matrix

from the one of the f(t)’s (see Appendix 1).

When the number of observation dates and of missing counts is too large, the use of

the delta method can be numerically cumbersome. It can be replaced by a bootstrap

method (for which the regularity conditions of validity are satisfied in our framework),

or by the approximated standard errors provided by an EKF, or UKF algorithm, after

adjusting for the misspecification of the autocovariances of the measurement equation

errors u(t).

Appendix 3

Nongeneric Cases in Proposition 3

This Appendix derives the equations used in the proof of Proposition 3. It provides

the closed form expressions of functions a(P ), b(P ), c(P ), and outlines conditions 1 to 4

for the validity of Proposition 3.

i) Let us first solve the second equation of system (4.3). We get:

(p23 − p13)p2(t− 1) = p3(t) + (p13 − p33)p3(t− 1)− p13,

or,

p2(t− 1) = [p3(t) + (p13 − p33)p3(t− 1)− p13]/(p23 − p13),

if the following condition is satisfied:

condition 1: p23 is different of p13.
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ii) Next, let us consider the first equation of system (4.3):

p2(t) = p12 + (p22 − p12)p2(t− 1) + (p32 − p12)p3(t− 1)

and substitute into this equation the expression of p2(t) derived in part i). We get:

p3(t+ 1) + (p13− p33)p3(t)− p13 = p12(p23− p13) + (p22− p12)[p3(t) + (p13− p33)p3(t−
1)− p13] + (p23 − p13)(p32 − p12)p3(t− 1).

It follows that:

a(P ) = p12(p23 − p13) + p13(1− p22 + p12),

b(P ) = p22 − p12 + p33 − p13,

c(P ) = (p22 − p12)(p13 − p33) + (p23 − p13)(p32 − p12).

To get a recursive equation of order 2, we need the second condition:

condition 2: c(P ) 6= 0

To identify functions a, b, c from the observed p3(t), we need:

condition 3: The matrix 3×(T−2) with columns (1, ..., 1)′, (p3(T−1), p3(T−2), .., p3(2))′

and (p3(T − 2), p3(T − 3), ..., p3(1))′ is of full column rank.

This implies, in particular, the order condition: T ≥ 5 in Proposition 3.

The following condition 4 is needed for computing the exact under-identification order of

P from functions a, b, c.

condition 4: By taking into account the unit mass restrictions on the rows of P ,the

Jacobian of (a, b, c) has rank 3.

Note that condition 4 implies condition 2.
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Figure 1: Evolution of Marginal Probabilities
Solid line-baseline, dotted line - doubled transmission parameters, dashed line - halved

transmission parameters
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Figure 2: Evolution of New Counts
Solid line-baseline, dotted line - doubled transmission parameters, dashed line - halved

transmission parameters
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Figure 3: Evolution of Observed Counts, 03/16 to 04/06, France
The figure shows the evolution of observed daily counts. In the panel of deceased

(bottom, right), the solid line shows the total deceased in France and the dashed line the
(reported) deceased due to Covid-19
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Figure 4: Estimated and Observed Counts
The estimated counts - solid line, observed counts - dashed line. The figure compares
the estimated counts of Infected and Undetected with the observed Infected Detected
(top panel), and Recovered estimated and reported as hospitalizations (bottom panel).

The dotted lines depict the confidence intervals.
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Figure 5: Projected Evolution of Marginal Probabilities.
The figure displays projected daily marginal probabilities of all states over 25 years.
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Figure 6: Projected Evolution of Net Balance of Hospitalization

The dashed line shows the projected daily net changes in hospitalization ∆p3(t) ∗ pop
over 60 days following the end of sample on April 6. The dashed line depicts the true

net changes in hospitalization observed ex-post. On April 15 (i.e. after 10 days) the net
changes in hospitalization become negative (-513) and remain negative with high

variation between -792 on 06/05 and 0 on 04/26. The dotted lines represent the CI of
the projection.


